Hybrid methods that combine molecular dynamics methods capable of analyzing dynamics with Monte Carlo (MC) methods that can efficiently treat thermodynamically stable states are valuable for understanding complex chemical processes in which an equilibrium state is reached through many elementary processes. The hybrid MC (HMC) method is one such promising method; however, it often fails to sample configurations properly from the canonical multimodal distribution due to the rugged potential energy surfaces. In this paper, we extend the HMC method to overcome this difficulty. The new method, which is termed potential scaling HMC (PS-HMC), makes use of an artificially modulated trajectory to propose a new configuration. The trajectory is generated from Hamilton's equations, but the potential energy surface is scaled to be gradually flattened and then recovered to the original surface, which facilitates barrier-crossing processes. We apply the PS-HMC method to three kinds of molecular processes: the thermal motion of argon particles, butane isomerization, and an atom transfer chemical reaction. These applications demonstrate that the PS-HMC method is capable of correctly constructing the canonical ensemble with a multimodal distribution. The sampling efficiency and accepted trajectories are examined to clarify the features of the PS-HMC method. Despite the potential scaling, many reactive atom transfer trajectories (elementary processes) pass through the vicinity of the minimum energy path. Furthermore, we demonstrate that the method can properly imitate the relaxation process owing to the inherent configurational continuity. By comparing the PS-HMC method with other relevant methods, we can conclude that the new method is a unique approach for studying both the dynamic and thermodynamic aspects of chemical processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0082378 | DOI Listing |
J Chem Phys
March 2022
Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!