CO-assisted oxidative dehydrogenation of propane (CO-ODHP) is an attractive strategy to offset the demand gap of propylene due to its potentiality of reducing CO emissions, especially under the demands of peaking CO emissions and carbon neutrality. The introduction of CO as a soft oxidant into the reaction not only averts the over-oxidation of products, but also maintains the high oxidation state of the redox-active sites. Furthermore, the presence of CO increases the conversion of propane by coupling the dehydrogenation of propane (DHP) with the reverse water gas reaction (RWGS) and inhibits the coking formation to prolong the lifetime of catalysts via the reverse Boudouard reaction. An effective catalyst should selectively activate the C-H bond but suppress the C-C cleavage. However, to prepare such a catalyst remains challenging. Chromium-based catalysts are always applied in industrial application of DHP; however, their toxic properties are harmful to the environment. In this aspect, exploring environment-friendly and sustainable catalytic systems with Cr-free is an important issue. In this review, we outline the development of the CO-ODHP especially in the last ten years, including the structural information, catalytic performances, and mechanisms of chromium-free metal-based catalyst systems, and the role of CO in the reaction. We also present perspectives for future progress in the CO-ODHP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913863 | PMC |
http://dx.doi.org/10.1007/s12598-021-01959-y | DOI Listing |
RSC Adv
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry and Life Science, Yokohama National University, Yokohama, 240-8501, Japan.
Hydrogen spillover, particularly when involving "interparticle" hydrogen spillover, offers a unique opportunity to enhance catalytic efficiency by remote activation of surface acidity. Building on this concept, this study aims to investigate physically mixed alumina-supported platinum nanoparticles (Pt/AlO) and zirconia-supported tungsten oxide (WO/ZrO) in promoting the direct synthesis of cumene from benzene and propane at 300 °C. The reaction with Pt/AlO alone afforded propylene as the only product, indicating the successive reaction route of Pt-catalyzed dehydrogenation of propane, followed by acid-catalyzed alkylation.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
Metal-free boron-based materials exhibit remarkable performance in oxidative dehydrogenation of propane (ODHP). Rational design of boron-based catalysts requires a systematic understanding of the underlying mechanisms to constitute a knowledge base. This work provides a comprehensive view of the reaction mechanism of the boron-based ODH reaction and discusses the key features of the reaction systems, including the inhibition of deep oxidation, high olefin selectivity, and the role of water in the ODHP reaction.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
The direct dehydrogenation of alkanes to olefins under mild conditions is challenging due to the inert nature of alkyl C─H bonds. Herein, an efficient photocatalytic system is developed for propane direct dehydrogenation (PDH) to propylene, consisting of ≈1.30 nm sized PtO clusters immobilized on a layered double hydroxide -derived ZnO/AlO support (LD-Pt).
View Article and Find Full Text PDFChemSusChem
January 2025
Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China.
The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al vacancies of AlO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!