Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the onset of motion of a living cell (e.g., a keratocyte) driven by myosin contraction with focus on a transition from unstable radial stationary states to stable asymmetric moving states. We introduce a two- dimensional free-boundary model that generalizes a previous one-dimensional model [P. Recho, T. Putelat, and L. Truskinovsky, Phys. Rev. Lett. 111, 108102 (2013)10.1103/PhysRevLett.111.108102] by combining a Keller-Segel model, a Hele-Shaw boundary condition, and the Young-Laplace law with a regularizing term which precludes blowup or collapse by ensuring that membrane-cortex interaction is sufficiently strong. We find a family of asymmetric traveling solutions bifurcating from stationary solutions. Our main result is nonlinear asymptotic stability of traveling solutions that model observable steady cell motion. We derive an explicit asymptotic formula for the stability-determining eigenvalue via asymptotic expansions in small speed. This formula greatly simplifies computation of this eigenvalue and shows that stability is determined by the change in total myosin mass when stationary solutions bifurcate to traveling solutions. Our spectral analysis reveals the physical mechanisms of stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.024403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!