A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Asymptotic stability of contraction-driven cell motion. | LitMetric

Asymptotic stability of contraction-driven cell motion.

Phys Rev E

Department of Mathematics and Huck Institute for Life Sciences, The Pennsylvania State University, Pennsylvania, USA.

Published: February 2022

We study the onset of motion of a living cell (e.g., a keratocyte) driven by myosin contraction with focus on a transition from unstable radial stationary states to stable asymmetric moving states. We introduce a two- dimensional free-boundary model that generalizes a previous one-dimensional model [P. Recho, T. Putelat, and L. Truskinovsky, Phys. Rev. Lett. 111, 108102 (2013)10.1103/PhysRevLett.111.108102] by combining a Keller-Segel model, a Hele-Shaw boundary condition, and the Young-Laplace law with a regularizing term which precludes blowup or collapse by ensuring that membrane-cortex interaction is sufficiently strong. We find a family of asymmetric traveling solutions bifurcating from stationary solutions. Our main result is nonlinear asymptotic stability of traveling solutions that model observable steady cell motion. We derive an explicit asymptotic formula for the stability-determining eigenvalue via asymptotic expansions in small speed. This formula greatly simplifies computation of this eigenvalue and shows that stability is determined by the change in total myosin mass when stationary solutions bifurcate to traveling solutions. Our spectral analysis reveals the physical mechanisms of stability.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.024403DOI Listing

Publication Analysis

Top Keywords

traveling solutions
12
asymptotic stability
8
cell motion
8
stationary solutions
8
solutions
5
asymptotic
4
stability contraction-driven
4
contraction-driven cell
4
motion study
4
study onset
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!