A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantifying microstructural evolution via time-dependent reduced-dimension metrics based on hierarchical n-point polytope functions. | LitMetric

We devise reduced-dimension metrics for effectively measuring the distance between two points (i.e., microstructures) in the microstructure space and quantifying the pathway associated with microstructural evolution, based on a recently introduced set of hierarchical n-point polytope functions P_{n}. The P_{n} functions provide the probability of finding particular n-point configurations associated with regular n polytopes in the material system, and are a special subset of the standard n-point correlation functions S_{n} that effectively decompose the structural features in the system into regular polyhedral basis with different symmetries. The nth order metric Ω_{n} is defined as the L_{1} norm associated with the P_{n} functions of two distinct microstructures. By choosing a reference initial state (i.e., a microstructure associated with t_{0}=0), the Ω_{n}(t) metrics quantify the evolution of distinct polyhedral symmetries and can in principle capture emerging polyhedral symmetries that are not apparent in the initial state. To demonstrate their utility, we apply the Ω_{n} metrics to a two-dimensional binary system undergoing spinodal decomposition to extract the phase separation dynamics via the temporal scaling behavior of the corresponding Ω_{n}(t), which reveals mechanisms governing the evolution. Moreover, we employ Ω_{n}(t) to analyze pattern evolution during vapor deposition of phase-separating alloy films with different surface contact angles, which exhibit rich evolution dynamics including both unstable and oscillating patterns. The Ω_{n} metrics have potential applications in establishing quantitative processing-structure-property relationships, as well as real-time processing control and optimization of complex heterogeneous material systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.025306DOI Listing

Publication Analysis

Top Keywords

microstructural evolution
8
reduced-dimension metrics
8
hierarchical n-point
8
n-point polytope
8
polytope functions
8
p_{n} functions
8
initial state
8
polyhedral symmetries
8
Ω_{n} metrics
8
evolution
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!