Insect flight: Flies use a throttle to steer.

Curr Biol

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.

Published: March 2022

A new study of flight control in Drosophila using neurogenetic methods and a virtual reality flight arena has revealed a group of descending neurons that fully activate the flight motor and steer the fly by independent regulation of the left and right wings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2022.01.043DOI Listing

Publication Analysis

Top Keywords

insect flight
4
flight flies
4
flies throttle
4
throttle steer
4
steer study
4
study flight
4
flight control
4
control drosophila
4
drosophila neurogenetic
4
neurogenetic methods
4

Similar Publications

Kinematics and Flow Field Analysis of Flight.

Biomimetics (Basel)

December 2024

Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance.

View Article and Find Full Text PDF

Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.

View Article and Find Full Text PDF

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Transl Neurodegener

December 2024

Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.

Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.

Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.

View Article and Find Full Text PDF

Motor Control on the Move - from Insights in Insects to General Mechanisms.

Physiol Rev

December 2024

Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.

This review discusses how the nervous system controls the complex body movements keeping animals up and running. In particular, we revisit how research in insects has shed light onto motor control principles that govern movements across the animal kingdom. Starting with the organization and evolution of the insect nervous system, we discuss insights into the neuronal control of behaviors varying in complexity, including escape, flight, crawling, walking, grooming, and courtship.

View Article and Find Full Text PDF

Flying insects have a robust flight system that allows them to fly even when their forewings are damaged. The insect must adjust wingbeat kinematics to aerodynamically compensate for the loss of wing area. However, the mechanisms that allow insects with asynchronous flight muscle to adapt to wing damage are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!