Background: Pilots must process multiple streams of information simultaneously. Mental workload is one of the main issues in man-machine interactive mode when dealing with multiple tasks. This study aimed to combine functional near-infrared spectroscopy (fNIRS) and electrocardiogram (ECG) to detect changes in mental workload during multitasking in a simulated flight.
Methods: Twenty-six participants performed three multitasking tasks at different mental workload levels. These mental workload levels were set by varying the number of subtasks. fNIRS and ECG signals were recorded during tasks. Participants filled in the national aeronautics and space administration task load index (NASA-TLX) scale after each task. The effects of mental workload on scores of NASA-TLX, performance of tasks, heart rate (HR), heart rate variability (HRV), and the prefrontal cortex (PFC) activation were analyzed.
Results: Compared to multitasking in lower mental workload conditions, participants exhibited higher scores of NASA-TLX, HR, and PFC activation when multitasking in high mental workload conditions. Their performance was worse during the high mental workload multitasking condition, as evidenced by the higher average tracking distance, smaller number of response times, and longer response time of the meter. The standard deviation of the RR intervals (SDNN) was negatively correlated with subjective mental workload in the low task load condition and PFC activation was positively correlated with HR and subjective mental workload in the medium task load condition.
Conclusion: HR and PFC activation can be used to detect changes in mental workload during simulated flight multitasking tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014989 | PMC |
http://dx.doi.org/10.1002/brb3.2489 | DOI Listing |
Phys Sportsmed
January 2025
Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.
Objectives: This study aimed to compare the psychological demands and external workload experienced in the seven sessions leading up to injuries and the demands in the month preceding the injury week among professional Brazilian soccer players.
Methods: Initially, 33 players participated, but only 15 were included in the analysis due to the occurrence of twenty-three muscle-tendon injuries recorded according to International Olympic Committee (IOC) guidelines. The study assessed muscle-tendon injuries, rate of perceived exertion (RPE), and psychological variables (i.
Int J Ment Health Nurs
February 2025
Duke University School of Nursing, Durham, North Carolina, USA.
The nursing profession has been significantly affected by the COVID-19 pandemic, and nurses continue to suffer emotionally and psychologically. The purpose of this study was to describe the experiences of chronic and ongoing occupational psychological trauma nurses have endured during the COVID-19 pandemic to present day. Eight nurses were interviewed between November 2022 and April 2023.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Aerospace Hygiene, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China.
Introduction: Multitasking during flights leads to a high mental workload, which is detrimental for maintaining task performance. Electroencephalography (EEG) power spectral analysis based on frequency-band oscillations and microstate analysis based on global brain network activation can be used to evaluate mental workload. This study explored the effects of a high mental workload during simulated flight multitasking on EEG frequency-band power and microstate parameters.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Aerospace Medical Equipment, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
Backgrounds: Functional near-infrared spectroscopy (fNIRS) is widely used for the evaluation of mental workload (MWL), but it is not yet clear whether it is affected by physical factors during cognitive tasks. Therefore, the combined effects of physical and cognitive loads on hemodynamic features in the prefrontal cortex were evaluated.
Methods: Thirty-three eligible healthy male subjects were asked to perform three types of cognitive tasks (1-back, 2-back and 3-back).
JMIR Form Res
January 2025
University Hospital for Visceral Surgery, PIUS-Hospital, Department for Human Medicine, Faculty VI, University of Oldenburg, Oldenburg, Germany.
Background: The integration of advanced technologies such as augmented reality (AR) and virtual reality (VR) into surgical procedures has garnered significant attention. However, the introduction of these innovations requires thorough evaluation in the context of human-machine interaction. Despite their potential benefits, new technologies can complicate surgical tasks and increase the cognitive load on surgeons, potentially offsetting their intended advantages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!