CaMKII is essential for long-term potentiation (LTP), a process in which synaptic strength is increased following the acquisition of information. Among the four CaMKII isoforms, γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons (LTP). However, the molecular mechanism underlying how γCaMKII mediates LTP remains unclear. Here, we show that γCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10-30 Hz range. Following stimulation, γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95. Knocking down γCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors (AMPARs) in putative inhibitory interneurons, which are restored by overexpression of γCaMKII but not its kinase-dead form. Taken together, these data suggest that γCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352831 | PMC |
http://dx.doi.org/10.1007/s12264-022-00840-x | DOI Listing |
Toxics
November 2024
National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.
View Article and Find Full Text PDFNeuronal connection dysfunction is a convergent cause of cognitive deficits in mental disorders. Cognitive processes are finely regulated at the synaptic level by membrane proteins, some of which are shed and detectable in patients' cerebrospinal fluid (CSF). However, whether these soluble synaptic proteins can harnessed as innovative pro-cognitive factors to treat brain disorders remains unclear.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Istituto Italiano di Tecnologia, Synaptic Plasticity of Inhibitory Networks, Genova, Italy.
J Neurosci
January 2025
Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congential seizures.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!