An influent generator for WRRF design and operation based on a recurrent neural network with multi-objective optimization using a genetic algorithm.

Water Sci Technol

modelEAU, Université Laval, 1065, Avenue de la Médecine, Québec, QC G1 V 0A6, Canada E-mail: CentrEau, Québec Water Research Center, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada.

Published: March 2022

Nowadays, modelling, automation and control are widely used for Water Resource Recovery Facilities (WRRF) upgrading and optimization. Influent generator (IG) models are used to provide relevant input time series for dynamic WRRF simulations used in these applications. Current IG models found in literature are calibrated on the basis of a single performance criterion, such as the mean percentage error or the root mean square error. This results in the IG being adequate on average but with a lack of representativeness of, for instance, the observed temporal variability of the dataset. However, adequately capturing influent variability may be important for certain types of WRRF optimization, e.g., reaction to peak loads, control system performance evaluation, etc. Therefore, in this study, a data-driven IG model is developed based on the long short-term memory (LSTM) recurrent neural network and is optimized by a multi-objective genetic algorithm for both mean percentage error and variability. Hence, the influent generator model is able to generate a time series with a probability distribution that better represents reality, thus giving a better influent description for WRRF design and operation. To further increase the variability of the generated time series and in this way approximate the true variability better, the model is extended with a random walk process.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2022.048DOI Listing

Publication Analysis

Top Keywords

influent generator
12
time series
12
wrrf design
8
design operation
8
recurrent neural
8
neural network
8
genetic algorithm
8
percentage error
8
influent
5
wrrf
5

Similar Publications

This research study critically evaluates the concentrations of selected pharmaceuticals found within wastewater and at various stages within a selected wastewater treatment plant. The study further investigates the effects of seasonal variation, between wet and dry months, on the removal of target analytes. To the best of the authors' knowledge, ivermectin in wastewater has not been investigated in South Africa.

View Article and Find Full Text PDF

The improper disposal of olive mill wastewater (OMW) presents a significant environmental challenge for wastewater treatment plants (WWTPs) in the Gaza Strip. This study aims to evaluate the impact of OMW discharge on the operational efficiency of WWTPs, particularly during the olive harvesting season. To achieve this, samples were collected from both olive mills and WWTPs across the region and analyzed for key parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, oil and grease, and total suspended solids (TSS).

View Article and Find Full Text PDF

Viral concentration method biases in the detection of viral profiles in wastewater.

Appl Environ Microbiol

December 2024

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA.

Viral detection methodologies used for wastewater-based epidemiology (WBE) studies have a broad range of efficacies. The complex matrix and low viral particle load in wastewater emphasize the importance of the concentration method. This study focused on comparing three commonly used virus concentration methods: polyethylene glycol precipitation (PEG), immuno-magnetic nanoparticles (IMNP), and electronegative membrane filtration (EMF).

View Article and Find Full Text PDF

Vinasse, a by-product of ethanol production, is generated at significant rates. While rich in nutrients such as calcium, magnesium, and potassium, its high solids, organic matter, acidity, and sulfate content pose challenges when disposed directly on soil, necessitating treatment. Anaerobic digestion is a viable solution, reducing organic pollution while recovering energy in the form of biogas, aligning with the biorefinery concept.

View Article and Find Full Text PDF

Simultaneous effects of nanoscale zero-valent iron on wastewater decontamination and energy generation: Mechanisms of sulfamethoxazole degradation and methanogenesis.

J Hazard Mater

November 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:

The presence of sulfamethoxazole (SMX) can adversely affect the anaerobic digestion process, reducing the efficiency of wastewater treatment and methane production. In this study, the addition of exogenous nanoscale zero-valent iron (nZVI) enhanced the efficient treatment of SMX and promoted the energy recovery from antibiotic wastewater. The results showed that the removal of SMX in the reactor pairs with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!