Full-fat field cricket meal (FCP) is an alternative protein ingredient in livestock production; however, the effects of replacing conventional protein sources with FCP in nursery diets have not been determined. In this study, the effects of the partial replacement of either fish meal or soybean meal with FCP on weaning pigs were evaluated, including the analyses of growth performance, nutrient utilization, intestinal morphology, 
immunity, oxidative stress, and fecal microbial counts. A total of 100 crossbred weaning pigs [(Landrace × Large White) × Duroc] were allotted to one of the following five treatments with five replicates (four pigs/pen) and fed for 28 d postweaning. Treatments were 1) a corn-soybean meal (SBM)-based diet with 5% fish meal (Positive control; PC), 2) a corn-SBM-based diet without fish meal (Negative control; NC), 3) field crickets replacing fishmeal on a total Lys basis (FCP1), 4) field crickets replacing fishmeal on a kg/kg basis (FCP2), and 5) field crickets replacing fish meal and soybean meal (FCP3). The piglets on FCP1 had a higher body weight on days 14 and 28, and an increased average daily gain over the experimental period than NC (P < 0.05); FCP2 and FCP3 were similar to the FCP1 treatment. The incidence of diarrhea was lower under an FCP-supplemented diet than under the NC diet throughout the study (P < 0.05). Pigs fed FCP1 and FCP2 had a higher digestibility of crude 
protein (P = 0.041), and all FCP groups increased crude fat digestibility (P = 0.024). FCP1 and FCP2 also increased jejunal villus height 
(P = 0.009), whereas the increase in jejunal villus-to-crypt ratios (P = 0.019) was greater in pigs fed the FCP2 diet than those fed the NC diet. Furthermore, FCP2 supplementation increased serum immunoglobulin A levels on days 14 and 28, including reduced serum interleukin-6 and tumor necrosis factor alpha levels (P < 0.05). Pigs fed an FCP2 diet had reduced malondialdehyde levels than those fed a PC diet, while pigs fed an FCP2 diet had higher superoxide dismutase and glutathione peroxidase levels, and more fecal Lactobacillus spp. than those fed an NC diet (P < 0.05). These results support the use of FCP as an alternative protein ingredient with beneficial effects on growth performance, intestinal morphology, antioxidant capacity, and intestinal microbiota. In particular, FCP can be used as a partial substitute for fish meal and soybean meal without detrimental effects on weaning pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047170PMC
http://dx.doi.org/10.1093/jas/skac080DOI Listing

Publication Analysis

Top Keywords

fish meal
24
meal soybean
16
soybean meal
16
pigs fed
16
meal
12
growth performance
12
weaning pigs
12
field crickets
12
crickets replacing
12
fed fcp2
12

Similar Publications

Butyrate is one of the most abundant short-chain fatty acids (SCFAs), which are important metabolites of dietary fiber by fermentation of gut commensals, and has been shown to be vital in maintaining host health. The present study mainly investigated how sodium butyrate (NaB) supplementation in the diet with high proportion of soybean meal (SBM) affected turbot. Four experimental diets were formulated: (1) fish meal (FM) based diet (control group), (2) SBM protein replacing 45% FM protein in the diet (high SBM group), (3) 0.

View Article and Find Full Text PDF

Supplemental effects of in a low-fish meal diet for at varying temperatures: growth performance, innate immunity and gut bacterial community.

Front Immunol

December 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

This study examined the effects of on the growth performance, innate immunity, and gut microbiota of under different water temperature conditions. Feeding regimens included a 20% fishmeal diet (control), a low-fish meal (LFM) diet with 10% fishmeal and an LFM diet supplemented with 0.03% .

View Article and Find Full Text PDF

Prevalence and determinants of healthy and balanced diet among office workers in a sedentary working environment: evidence from Southern Sri Lanka.

BMC Public Health

December 2024

Consultant Community Physician, Health Promotion Bureau, Ministry of Health, Nutrition and Indigenous Medicine, Colombo, Sri Lanka.

Background: An unhealthy diet is a key risk factor for non-communicable diseases (NCD), which account for a significant number of premature deaths and disability-adjusted life years worldwide. Office workers are reported to have unhealthy and unbalanced diets, while being sedentary due to the nature of their work, placing them at a greater risk of NCD. This study aimed to determine dietary intake and associated factors among sedentary office workers in Southern Sri Lanka.

View Article and Find Full Text PDF

Fishmeal (FM) is a key component of commercial fish feeds, but due its unsustainable supply, the search for quality alternatives of FM has become a significant area of investigation worldwide. The insect-based proteins such as black soldier fly larvae (BSFL) are being recognized as an alternative ingredient. However, anti-nutritional factors in these alternatives may negatively affect nutrient utilization in fish.

View Article and Find Full Text PDF

Weight regain within one year after weight loss is frequently observed and is referred to as yo-yo dieting or weight cycling. In this study, we explore the effects of yo-yo dieting on the liver, adipose tissue, and muscle characteristics of male zebrafish. Four-month-old AB wild-type male zebrafish were randomly assigned to three groups: high-calorie intake (H, seven meals per day), low-calorie intake (L, two meals per day), and yo-yo diet (the low- and high-calorie alternation switched every two weeks) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!