Circular RNAs (circRNAs) are a class of non-coding RNAs featuring a covalently closed ring structure formed through backsplicing. circRNAs are broadly expressed and contribute to biological processes through a variety of functions. Standard gain-of-function and loss-of-function approaches to study gene functions have significant limitations when studying circRNAs. Overexpression studies in particular suffer from the lack of efficient genetic tools. While mammalian expression plasmids enable transient circRNA overexpression in cultured cells, most cell biological studies require long-term ectopic expression. Here we report the development and characterization of genetic tools enabling stable circRNA overexpression and . We demonstrated that circRNA expression constructs can be delivered to cultured cells via transposons, whereas lentiviral vectors have limited utility for the delivery of circRNA constructs due to viral RNA splicing in virus-producing cells. We further demonstrated ectopic circRNA expression in a hepatocellular carcinoma mouse model upon circRNA transposon delivery via hydrodynamic tail vein injection. Furthermore, we generated genetically engineered mice harbouring circRNA expression constructs. We demonstrated that this approach enables constitutive, global circRNA overexpression as well as inducible circRNA expression directed specifically to melanocytes in a melanoma mouse model. These tools expand the genetic toolkit available for the functional characterization of circRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928841PMC
http://dx.doi.org/10.1080/15476286.2022.2043041DOI Listing

Publication Analysis

Top Keywords

circrna expression
16
genetic tools
12
circrna overexpression
12
circrna
9
circular rnas
8
cultured cells
8
expression constructs
8
mouse model
8
expression
6
overexpression
5

Similar Publications

Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.

View Article and Find Full Text PDF

BRAF regulates circPSD3/miR-526b/RAP2A axis to hinder papillary thyroid carcinoma progression.

BMC Mol Cell Biol

January 2025

Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China.

Background: Papillary thyroid carcinoma (PTC) is a common malignant tumor. BRAF mutation has become a common molecular event in PTC pathogenesis. Circular RNA PSD3 (circPSD3) is known to be highly expressed in PTC.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (ICC), a formidable challenge in oncology, demands innovative biomarkers and therapeutic targets. This research highlights the importance of the circular RNA (circRNA) circPCSK6 and its peptide derivative circPCSK6-167aa in ICC. CircPCSK6 is significantly downregulated in both ICC patients and mouse primary ICC models, and its lower expression is linked to adverse prognosis, highlighting its pivotal role in ICC pathogenesis.

View Article and Find Full Text PDF

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

CircZmMED16 delays plant flowering by negatively regulating starch content through its binding to ZmAPS1.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.

Circular RNAs (circRNAs), a type of head-to-tail closed RNA molecules, have been implicated in various aspects of plant development and stress responses through transcriptome sequencing; however, the precise functional roles of circRNAs in plants remain poorly understood. In this study, we identified a highly expressed circular RNA, circZmMED16, derived from exon 8 of the mediator complex subunit 16 (ZmMED16) across different maize (Zea mays L.) inbred lines using circRNA-seq analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!