A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasmonic CuS Nanocages for Enhanced Solar Photothermal Cell Warming. | LitMetric

Plasmonic CuS Nanocages for Enhanced Solar Photothermal Cell Warming.

ACS Appl Bio Mater

Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.

Published: April 2022

Highly efficient plasmonic photothermal nanomaterials are benefitial to the successful resuscitation of cells. Copper sulfide (CuS) is a type of plasmonic solar photothermal semiconductor material that expands the light collecting range by altering its localized surface plasmonic resonance (LSPR) to the near- to mid-infrared (IR) spectral region. Particularly, nanocages (or nanoshells) have hybridized plasmon resonances as the result of superpositioned nanospheres and nanocavities, which extend their receiving range for the solar spectrum and increase light-to-heat conversion rate. In this work, for the first time, we applied colloidal hollow CuS nanocages to revive cryopreserved HeLa cells via photothermal warming, which showed improved cell warming rate and cell viability after cell resuscitation. Moreover, we tested the photothermal performance of CuS nanocages with concentrated light illumination, which exhibited extraordinary photothermal performance due to localized and enhanced illumination. We further quantified each band's contribution during the cell warming process via evaluating the warming rate of cryopreserved cell solution with illumination by monochromatic UV, visible, and NIR lasers. We studied the biosafety and toxicity of CuS nanocages by analyzing the generated copper ion residue during cell warming and cell incubation, respectively. Our study shows that CuS nanocages have huge potential for cell warming and are promising for vast range of applications, such as nanomedicine, life science, biology, energy saving, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.2c00051DOI Listing

Publication Analysis

Top Keywords

cus nanocages
20
cell warming
20
cell
9
solar photothermal
8
warming rate
8
photothermal performance
8
warming
7
nanocages
6
photothermal
6
cus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!