The Sensitivity of Metal Oxide Electrocatalysis to Bulk Hydrogen Intercalation: Hydrogen Evolution on Tungsten Oxide.

J Am Chem Soc

Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.

Published: April 2022

Metal oxides are attracting increased attention as electrocatalysts owing to their affordability, tunability, and reactivity. However, these materials can undergo significant chemical changes under reaction conditions, presenting challenges for characterization and optimization. Herein, we combine experimental and computational methods to demonstrate that bulk hydrogen intercalation governs the activity of tungsten trioxide (WO) toward the hydrogen evolution reaction (HER). In contrast to the focus on surface processes in heterogeneous catalysis, we demonstrate that bulk oxide modification is responsible for experimental HER activity. Density functional theory (DFT) calculations reveal that intercalation enables the HER by altering the acid-base character of surface sites and preventing site blocking by hydration. First-principles microkinetic modeling supports that the experimental HER rates can only be explained by intercalated HWO, whereas nonintercalated WO does not catalyze the HER. Overall, this work underscores the critical influence of hydrogen intercalation on aqueous cathodic electrocatalysis at metal oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c00825DOI Listing

Publication Analysis

Top Keywords

hydrogen intercalation
12
bulk hydrogen
8
hydrogen evolution
8
metal oxides
8
demonstrate bulk
8
hydrogen
5
sensitivity metal
4
metal oxide
4
oxide electrocatalysis
4
electrocatalysis bulk
4

Similar Publications

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

2,4-Dichlorophenoxyacetic Acid in the Gas and Crystal Phases and Its Intercalation in Montmorillonite-An Experimental and Theoretical Study.

Molecules

January 2025

Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.

Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.

View Article and Find Full Text PDF

In this study, the interactions between three quaternary ammonium salt (QAS) cationic surfactants with different branched-chain lengths (TMBAC, TEBAC, and TBBAC) and DNA are investigated by UV-vis absorption, fluorescence and CD spectroscopy, viscosity method, and gel electrophoresis. Berberine hydrochloride (BR) is utilized as a fluorescent probe. The three interaction modes and strengths are compared.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!