DNA-based molecular logic gates have been developed rapidly but most of them have a single output mode. This study is to develop a triple-output label-free fluorescent DNA-based multifunctional molecular logic gate with berberine as a fluorescent signal and a Ag-aptamer as a recognition matrix. The Ag-aptamer has been identified to switch from a random coil to an i-motif structure of C-Ag-C from a Ag-induced responsive conformational change. As a fluorescent probe, berberine is ultrasensitive to the changes of microenvironments, and the binding to i-motif DNA's more rigid structure causes a significant increase in fluorescence, anisotropy, and lifetime. The addition of cysteine to the berberine/C-Ag-C system disintegrates the i-motif DNA structure because of the strong coordination between Ag and cysteine, and then the triple-output signals are almost retrieved. Given this, a highly sensitive triple-output molecular logic gate for the analyses of Ag and cysteine is constructed with high specificity. Moreover, this simple and cost-effective molecular logic gate has been applied for the detection of cysteine and Ag in various real environmental samples including river water, PM, soil, and food samples with satisfactory recoveries from 89.83 to 106.04%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c07469 | DOI Listing |
Anal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, 310024 Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, 310024 Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 310024 Hangzhou, Zhejiang, China; School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang, China. Electronic address:
Biocomputation aims to create sophisticated biological systems capable of addressing important problems in (bio)medicine with a machine-like precision. At present, computational gene networks engineered by single- or multi-layered assembly of DNA-, RNA- and protein-level gene switches have allowed bacterial or mammalian cells to perform various regulation logics of interest, including Boolean calculation or neural network-like computing. This review highlights the molecular building blocks, design principles, and computational tasks demonstrated by current biocomputers, before briefly discussing possible fields where biological computers may ultimately outcompete their electronic counterparts and achieve cellular supremacy.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFCancer Med
January 2025
Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Introduction: Small cell neuroendocrine carcinoma of the urinary tract (SCNEC-URO) has an inferior prognosis compared to conventional urothelial carcinoma (UC). Here, we evaluate the predictors and patterns of relapse after surgery.
Materials And Methods: We identified a definitive-surgery cohort (n = 224) from an institutional database of patients with cT1-T4NxM0 SCNEC-URO treated in 1985-2021.
RSC Adv
January 2025
Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
This work presents the development of a rhodamine-based colorimetric and turn-on fluorescent chemosensor (P1) designed for selective recognition of Ni ions. Chemosensor P1 exhibited remarkable sensitivity and selectivity for Ni ions, exhibiting clear colorimetric and fluorescence responses. The binding interactions were meticulously examined using UV-Vis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!