Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109055 | PMC |
http://dx.doi.org/10.1002/advs.202103241 | DOI Listing |
Open Forum Infect Dis
January 2025
Harvard Medical School, Boston, Massachusetts, USA.
Background: Infections by and influenza viruses are vaccine-preventable diseases causing great morbidity and mortality. We evaluated pneumococcal and influenza vaccination practices during pre-international travel health consultations.
Methods: We evaluated data on pretravel visits over a 10-year period (1 July 2012 through 31 June 2022) from 31 sites in Global TravEpiNet (GTEN), a consortium of US healthcare facilities providing pretravel health consultations.
Narra J
December 2024
Department of Pediatrics, Division of Infectious Disease, Children's Hospital Colorado, University of Colorado Denver, Aurora, USA.
Influenza surveillance is important for monitoring influenza virus circulation and disease burden to inform influenza prevention and control measures. The aim of this study was to describe the epidemiology and to estimate the incidence of influenza in two communities in West Java, Indonesia, before and after the 2009 H1N1 pandemic. A population-based surveillance study in the community health care setting was conducted to estimate the annual incidence of influenza.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan.
Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.
View Article and Find Full Text PDFNat Microbiol
January 2025
State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!