A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evidence for machine learning guided early prediction of acute outcomes in the treatment of depressed children and adolescents with antidepressants. | LitMetric

Background: The treatment of depression in children and adolescents is a substantial public health challenge. This study examined artificial intelligence tools for the prediction of early outcomes in depressed children and adolescents treated with fluoxetine, duloxetine, or placebo.

Methods: The study samples included training datasets (N = 271) from patients with major depressive disorder (MDD) treated with fluoxetine and testing datasets from patients with MDD treated with duloxetine (N = 255) or placebo (N = 265). Treatment trajectories were generated using probabilistic graphical models (PGMs). Unsupervised machine learning identified specific depressive symptom profiles and related thresholds of improvement during acute treatment.

Results: Variation in six depressive symptoms (difficulty having fun, social withdrawal, excessive fatigue, irritability, low self-esteem, and depressed feelings) assessed with the Children's Depression Rating Scale-Revised at 4-6 weeks predicted treatment outcomes with fluoxetine at 10-12 weeks with an average accuracy of 73% in the training dataset. The same six symptoms predicted 10-12 week outcomes at 4-6 weeks in (a) duloxetine testing datasets with an average accuracy of 76% and (b) placebo-treated patients with accuracies of 67%. In placebo-treated patients, the accuracies of predicting response and remission were similar to antidepressants. Accuracies for predicting nonresponse to placebo treatment were significantly lower than antidepressants.

Conclusions: PGMs provided clinically meaningful predictions in samples of depressed children and adolescents treated with fluoxetine or duloxetine. Future work should augment PGMs with biological data for refined predictions to guide the selection of pharmacological and psychotherapeutic treatment in children and adolescents with depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475486PMC
http://dx.doi.org/10.1111/jcpp.13580DOI Listing

Publication Analysis

Top Keywords

children adolescents
20
depressed children
12
treated fluoxetine
12
machine learning
8
adolescents treated
8
fluoxetine duloxetine
8
mdd treated
8
testing datasets
8
average accuracy
8
placebo-treated patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!