Background: This is the second update of a Cochrane Review first published in 2013 and last updated in 2017. Laparoscopic surgery is now widely performed to treat various abdominal diseases. Currently, carbon dioxide is the most frequently used gas for insufflation of the abdominal cavity (pneumoperitoneum). Although carbon dioxide meets most of the requirements for pneumoperitoneum, the absorption of carbon dioxide may be associated with adverse events. Therefore, other gases have been introduced as alternatives to carbon dioxide for establishing pneumoperitoneum.

Objectives: To assess the safety, benefits, and harms of different gases (e.g. carbon dioxide, helium, argon, nitrogen, nitrous oxide, and room air) used for establishing pneumoperitoneum in participants undergoing laparoscopic abdominal or gynaecological pelvic surgery.

Search Methods: We searched CENTRAL, Ovid MEDLINE, Ovid Embase, four other databases, and three trials registers on 15 October 2021 together with reference checking, citation searching, and contact with study authors to identify additional studies.

Selection Criteria: We included randomised controlled trials (RCTs) comparing different gases for establishing pneumoperitoneum in participants (irrespective of age, sex, or race) undergoing laparoscopic abdominal or gynaecological pelvic surgery under general anaesthesia.

Data Collection And Analysis: We used standard methodological procedures expected by Cochrane.

Main Results: We included 10 RCTs, randomising 583 participants, comparing different gases for establishing pneumoperitoneum: nitrous oxide (four trials), helium (five trials), or room air (one trial) was compared to carbon dioxide. All the RCTs were single-centre studies. Four RCTs were conducted in the USA; two in Australia; one in China; one in Finland; one in Iran; and one in the Netherlands. The mean age of the participants ranged from 27.6 years to 49.0 years. Four trials randomised participants to nitrous oxide pneumoperitoneum (132 participants) or carbon dioxide pneumoperitoneum (128 participants). None of the trials was at low risk of bias. The evidence is very uncertain about the effects of nitrous oxide pneumoperitoneum compared to carbon dioxide pneumoperitoneum on cardiopulmonary complications (Peto odds ratio (OR) 2.62, 95% CI 0.78 to 8.85; 3 studies, 204 participants; very low-certainty evidence), or surgical morbidity (Peto OR 1.01, 95% CI 0.14 to 7.31; 3 studies, 207 participants; very low-certainty evidence). There were no serious adverse events related to either nitrous oxide or carbon dioxide pneumoperitoneum (4 studies, 260 participants; very low-certainty evidence). Four trials randomised participants to helium pneumoperitoneum (69 participants) or carbon dioxide pneumoperitoneum (75 participants) and one trial involving 33 participants did not state the number of participants in each group. None of the trials was at low risk of bias. The evidence is very uncertain about the effects of helium pneumoperitoneum compared to carbon dioxide pneumoperitoneum on cardiopulmonary complications (Peto OR 1.66, 95% CI 0.28 to 9.72; 3 studies, 128 participants; very low-certainty evidence), or surgical morbidity (5 studies, 177 participants; very low-certainty evidence). There were three serious adverse events (subcutaneous emphysema) related to helium pneumoperitoneum (3 studies, 128 participants; very low-certainty evidence). One trial randomised participants to room air pneumoperitoneum (70 participants) or carbon dioxide pneumoperitoneum (76 participants). The trial was at high risk of bias. There were no cardiopulmonary complications, serious adverse events, or deaths observed related to either room air or carbon dioxide pneumoperitoneum.    AUTHORS' CONCLUSIONS: The evidence is very uncertain about the effects of nitrous oxide, helium, and room air pneumoperitoneum compared to carbon dioxide pneumoperitoneum on any of the primary outcomes, including cardiopulmonary complications, surgical morbidity, and serious adverse events. The safety of nitrous oxide, helium, and room air pneumoperitoneum has yet to be established, especially in people with high anaesthetic risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921952PMC
http://dx.doi.org/10.1002/14651858.CD009569.pub4DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
56
nitrous oxide
28
dioxide pneumoperitoneum
28
room air
24
pneumoperitoneum participants
24
participants low-certainty
24
low-certainty evidence
24
pneumoperitoneum
21
participants
21
adverse events
20

Similar Publications

Background: Rapid sequence induction intubation (RSII) is commonly used in emergency surgeries for patients at high risk of aspiration. However, these patients are more susceptible to hypoxemia during the RSII process. High-flow nasal cannula (HFNC) oxygen therapy has emerged as a potential alternative to traditional face mask (FM) ventilation pre- and apneic oxygenation.

View Article and Find Full Text PDF

Carbon stock quantification and climate mitigation potential of a tropical moist forest in Ethiopia.

PLoS One

January 2025

Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States of America.

The significance of forests in absorbing and storing carbon plays a crucial role in international greenhouse gas policies outlined by the United Nations Framework Convention for Climate Change (UNFCC). This study was conducted in a typical tropical moist forest of Ethiopia to assess its carbon stock, a critical issue in climate policy. The study domain was divided into six strata using elevation criteria.

View Article and Find Full Text PDF

Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone.

Glob Chang Biol

January 2025

Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.

The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.

View Article and Find Full Text PDF

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

Tailoring the oxidation of benzyl alcohol and its derivatives with (photo)electrocatalysis.

Chem Commun (Camb)

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.

The electrochemical oxidation of alcohol molecules has gained significance as a key anode reaction, offering an alternative to the oxygen evolution reaction (OER) for hydrogen (H) production and carbon dioxide (CO) reduction. The (photo)electrochemical oxidation of benzyl alcohol and its derivatives serves as an important model system, not only because benzyl alcohol oxidation is a critical industrial process, but also because it offers valuable insights into electrocatalytic biomass conversion. Tailoring this reaction through electrochemical and photoelectrochemical methods using heterogeneous noble and transition metal electrocatalysts presents a green approach and the potential for uncovering new reaction mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!