Uveal effusion syndrome describes serous detachments of the choroid and ciliary body with exudative retinal detachment. It is a complication following glaucoma filtering surgeries such as trabeculectomy especially in nanophthalmic eyes. We report a rare case of a 42-year-old-woman, with nanophtalmos, who developed posterior serous retinal detachment and uveal effusions after trabeculectomy for chronic angle closure glaucoma. The patient was put on oral steroids with good clinical outcome. Anterior Segment OCT allowed monitoring of iridocorneal angle and anterior chamber depth, Swept Source OCT was useful for monitoring retinal reattachment and choroidal thickness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972171 | PMC |
Sci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFOphthalmic Physiol Opt
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: To explore the longitudinal changes in retinal and choroidal thickness and their relation with the onset of type 1 diabetes mellitus (T1DM) in children.
Methods: Thirty-eight children with T1DM and 71 healthy controls were included in this 3-year longitudinal study. Ophthalmic and systemic examinations were conducted on each participant.
Sci Rep
January 2025
The Department of Ophthalmology, General Hospital of Central Theater Command, No. 627 Wuluo Road, Wuchang District, Wuhan, 430000, Hubei, China.
This study used ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to analyze and compare choroidal blood flow and anatomical changes in eyes affected by central serous chorioretinopathy (CSC), pachychoroid neovasculopathy (PNV), and uncomplicated pachychoroid (UCP). The findings revealed distribution patterns of vortex veins across the three patient groups and provided initial findings insights into the origin of choroidal neovascularization (CNV) in PNV. A total of 44 patients with CSC, 38 with PNV, and 46 with UCP were included in the analysis.
View Article and Find Full Text PDFJ Vitreoretin Dis
December 2024
Octane Imaging Lab, Toronto, ON, Canada.
To evaluate the combined relationship between ischemia, retinal fluid, and layer thickness measurements with visual acuity (VA) outcomes in patients with retinal vein occlusion (RVO). Swept-source optical coherence tomography (OCT) data were used to assess retinal layer thickness and quantify intraretinal fluid (IRF) and subretinal fluid (SRF) using a deep learning-based, macular fluid segmentation algorithm for treatment-naïve eyes diagnosed with visual impairment resulting from central RVO (CRVO) or branch RVO (BRVO). Patients received 3 loading doses of 2 mg intravitreal aflibercept injections and were then put on a treat-and-extend regimen.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Ophthalmology, Samsung Medical Center School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea.
Background: To evaluate the ocular biometry agreement and prediction of postoperative refractive outcomes obtained using two swept-source optical coherence tomography (SS-OCT) biometers: Anterion (Heidelberg Engineering, Heidelberg, Germany) and Argos (Alcon, Fort Worth, TX, USA).
Methods: Ambispective analysis was conducted on 105 eyes at the Samsung Medical Center, Seoul, Republic of Korea, between June 2021 and March 2022. Biometric values were assessed using both devices before cataract surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!