The endocrine regulator proteins, fibroblast growth factor 23 (FGF23) and Klotho have been well studied as mediators of phosphate metabolism. FGF23 has been implicated in the renal excretion of phosphate by limiting the docking of sodium-dependent phosphate transporters, Npt2a and Npt2c, into the luminal side of renal proximal tubular epithelial cells. By limiting Npt2a/c activity in the renal tubular epithelial cells, phosphate is reabsorbed at lower rates and is excreted at higher rates. The action of Klotho is relatively less understood but has been implicated as an FGF23 cofactor in receptor binding. Klotho is mostly synthesized in the distal tubules of the nephron relative to FGF23's activity in proximal renal tubules. The neurological sequelae due to alterations in the FGF23-Klotho axis may be explained by the direct effects of these phosphate-regulating proteins on neuronal tissues or by the roles of these proteins in phosphate metabolism. Hyperphosphatemia has been associated with vascular wall stiffness that may alter blood flow and weakenvessels in the brain. In contrast, hypophosphatemia may alter ATP usage and metabolism in the central nervous system (CNS), leading to neurological compromise. Altered levels of FGF23 and Klotho have both been associated with neurocognitive decline, clinical dementia, memory loss, and poor executive function in humans. Furthermore, FGF23 and Klotho dysregulation has been linked to structural and functional changes of the cardiovascular system with an increased risk of stroke. Subsequent research should focus on characterizing the neuropathology associated with alterations in the FGF23-Klotho system and dysregulated phosphate metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-91623-7_13DOI Listing

Publication Analysis

Top Keywords

fgf23 klotho
12
phosphate metabolism
12
tubular epithelial
8
epithelial cells
8
alterations fgf23-klotho
8
phosphate
7
fgf23
5
klotho
5
phosphate dysregulation
4
dysregulation neurocognitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!