Ground-cover vegetation attracts and harbors beneficial insects to the agrosystem, playing an important role in conservation biological control. Integrated pest management (IPM) program guidelines recommend the implantation of sowed or resident wild covers in perennial crops. Given the high-quality fruit requirements, even in IPM programs, insecticides can be required in citrus crops. This study presents, over a year, the levels of neonicotinoids (thiamethoxam and imidacloprid) in not-target ground-cover wildflowers growing spontaneously in citrus orchards after foliar treatment of citrus trees. The presence and persistence of these neonicotinoids in different wildflower species were studied. Concentrations of thiamethoxam and imidacloprid in whole wildflowers ranged from < method quantification limit (MQL) to 52.9 ng g and from < MQL to 98.6 ng g, respectively. Thiamethoxam was more frequently detected than imidacloprid. Thiamethoxam and imidacloprid were detected up to 336 and 230 days after treatment, respectively. The highest detection frequencies (100%) and highest thiamethoxam and imidacloprid mean concentrations (26.0 ± 7.3 ng g and 11.0 ± 10.6 ng g, respectively) occurred in wildflowers collected 9 days after the treatments. Since application, a clear decrease in the concentration of both compounds and differences in the accumulation depending on wildflower species were observed. Cross contamination was detected, indicating a transport from adjacent treated plots. Maintaining a cover crop in citrus orchards may lead to detrimental effects on non-target arthropods if these neonicotinoid compounds are used for pest control since they can entail a chronic exposure during at least 230 days for imidacloprid and 336 days for thiamethoxam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343284PMC
http://dx.doi.org/10.1007/s11356-022-19331-7DOI Listing

Publication Analysis

Top Keywords

citrus orchards
8
thiamethoxam imidacloprid
8
neonicotinoid contamination
4
contamination wildflowers
4
wildflowers collected
4
citrus
4
collected citrus
4
orchards northwestern
4
northwestern mediterranean
4
mediterranean region
4

Similar Publications

Gannan is the largest navel orange production area in China. Most studies have primarily focused on the effects of either soil or topographic factors on the quality of navel oranges. However, there has been a lack of research exploring the relationship between navel orange quality and multiple environmental factors (meteorological, topographic, and soil).

View Article and Find Full Text PDF

Molecular data should be combined with morphological data to enhance the reliability of phylogenetic and diagnostic studies on nematodes. In this study, the citrus nematode collected from citrus orchards in different localities in Fars province, southern Iran, was characterized using the partial sequencing of ITS rDNA, D2-D3 of 28S rDNA and COI mtDNA genes. We also morphometrically characterized the second-stage juveniles (J2) and male specimens.

View Article and Find Full Text PDF

Conservation agriculture practices (CAs) are important under the increasingly serious soil quality degradation of sloping farmlands worldwide. However, little is known about how the long-term application of CAs influences soil quality at different slope positions. We conducted field experiments for a watershed sloping farmland's mainstream planting systems in the Three Gorges Reservoir area of China.

View Article and Find Full Text PDF

Unraveling the mechanisms of multiple resistance across glyphosate and glufosinate in Eleusine indica.

Pestic Biochem Physiol

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

The herbicides glyphosate and glufosinate are commonly used in citrus and sugarcane orchards in Guangxi Province, China, wherein the C plant Eleusine indica (L.) Gaertn. is known to be a dominant weed species.

View Article and Find Full Text PDF

Optimizing control parameters for Huanglongbing disease in citrus orchards using SAIR-SI compartmental model, epidemic final size, and genetic algorithms.

J Math Biol

December 2024

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, 72570, Puebla, Puebla, México.

Huanglongbing (HLB) is a bacterial disease that affects citrus trees worldwide. We present an innovative approach for identifying optimal control and risk measures for HLB in citrus orchards. Our method is based on a mathematical model that incorporates the number of roguing trees and a logistic growth model for the dynamic of the Asian Citrus Psyllid (ACP), the primary vector for HLB transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!