Inoculating rice plants by plant growth promoting rhizobacteria (PGPR) may be used as a practical and eco-friendly approach to sustain the growth and yield of drought stressed rice plants. The effect of rice inoculation using plant growth hormones was investigated under drip full irrigation (FI; 100% of evapotranspiration (ETc), and deficit irrigation (DI; 80% of ETc) on growth, physiological responses, yields and water productivities under saline soil (ECe = 6.87 dS m) for 2017 and 2018 seasons. Growth (i.e. shoot length and shoot dry weight), leaf photosynthetic pigments (chlorophyll 'a' and chlorophyll 'b' content), air-canopy temperature (Tc-Ta), membrane stability index (MSI%), and relative water content, (RWC%) chlorophyll fluorescence (F/F) stomatal conductance (gs), total phenols, peroxidase (PO), polyphenol oxidase (PPO), nitrogen contents and water productivities (grain water productivity; G-WP and straw water productivity; S-WP) were positively affected and significantly (p < 0.05) differed in two seasons in response to the applied PGPR treatments. The highest yields (3.35 and 6.7 t ha for grain and straw yields) as the average for both years were recorded under full irrigation and plants inoculated by PGPR. The results indicated that under water scarcity, application of (I + PGPR) treatment was found to be favorable to save 20% of the applied irrigation water, to produce not only the same yields, approximately, but also to save more water as compared to I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921367PMC
http://dx.doi.org/10.1186/s12284-022-00564-6DOI Listing

Publication Analysis

Top Keywords

water productivity
12
rice plants
12
plant growth
8
water productivities
8
growth
6
water
6
plant growth-promoting
4
growth-promoting rhizobacteria
4
rhizobacteria improve
4
improve growth
4

Similar Publications

Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton.

Proc Natl Acad Sci U S A

January 2025

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.

Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.

View Article and Find Full Text PDF

Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.

View Article and Find Full Text PDF

Fluoride-Induced Autophagy and Apoptosis in the Mouse Ovary: Genomic Insights into IL-17 Signaling and Gut Microbiota Dysbiosis.

J Agric Food Chem

January 2025

Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan,China.

Chronic fluoride (F) exposure is linked to gonadotoxicity in females, yet the underlying molecular mechanisms remain unclear. This study investigated fluoride-induced reprotoxicity using advanced genomic profiling. RNA-seq analysis identified significant activation of autophagy, apoptosis, and IL-17 signaling pathways in fluoride-exposed female mice.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!