Carbon nanotubes, and synthetic organic nanotubes more generally, have in recent decades been widely explored for application in electronic devices, energy storage, catalysis and biosensors. Despite noteworthy progress made in the synthesis of nanotubular architectures with well-defined lengths and diameters, purely covalently bonded organic nanotubes have remained somewhat challenging to prepare. Here we report the synthesis of covalently bonded porous organic nanotubes (CONTs) by Schiff base reaction between a tetratopic amine-functionalized triptycene and a linear dialdehyde. The spatial orientation of the functional groups promotes the growth of the framework in one dimension, and the strong covalent bonds between carbon, nitrogen and oxygen impart the resulting CONTs with high thermal and chemical stability. Upon ultrasonication, the CONTs form intertwined structures that go on to coil and form toroidal superstructures. Computational studies give some insight into the effect of the solvent in this assembly process.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-022-00908-1DOI Listing

Publication Analysis

Top Keywords

organic nanotubes
16
covalently bonded
8
nanotubes
5
porous covalent
4
organic
4
covalent organic
4
nanotubes assembly
4
assembly loops
4
loops toroids
4
toroids carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!