The lymphatic system has an important role in maintaining fluid homeostasis and transporting immune cells and biomolecules, such as dietary fat, metabolic products, and antigens in different organs and tissues. Therefore, impaired lymphatic vessel function and/or lymphatic vessel deficiency can lead to numerous human diseases. The discovery of lymphatic endothelial markers and prolymphangiogenic growth factors, along with a growing number of in vitro and in vivo models and technologies has expedited research in lymphatic tissue and organ engineering, advancing therapeutic strategies. In this article, we describe lymphatic tissue and organ engineering in two- and three-dimensional culture systems and recently developed microfluidics and organ-on-a-chip systems in vitro. Next, we discuss advances in lymphatic tissue and organ engineering in vivo, focusing on biomaterial and scaffold engineering and their applications for lymphatic vessels and lymphoid organ regeneration. Last, we provide expert perspective and prospects in the field of lymphatic tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435571PMC
http://dx.doi.org/10.1101/cshperspect.a041169DOI Listing

Publication Analysis

Top Keywords

lymphatic tissue
20
tissue organ
16
organ engineering
16
lymphatic
10
lymphatic vessel
8
engineering
6
organ
5
engineering vitro
4
vitro modeling
4
modeling vivo
4

Similar Publications

Collared Peccary (Pecari tajacu, Linnaeus, 1758) is a mammalian Tayassuidae species from tropical to semi-arid areas. The morphological features of the oral cavity in this species were identified and described. Tonsils are secondary lymphoid organs essential for contact with antigens due to food and air intake.

View Article and Find Full Text PDF

Introduction: Copper is an essential trace element crucial for enzyme synthesis and metabolism. Adequate copper levels are beneficial for maintaining the normal immune function of the spleen. Copper deficiency disrupts the metabolic processes within the spleen and impairs its immune function.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

[Progress in the study of the surgical management of Crohn disease based on the mesenteric concept].

Zhonghua Wai Ke Za Zhi

January 2025

Department of General Surgery (Colorectal Surgery), the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou510655, China.

In recent years, with the deepening of mesentery research, it is found that its blood vessels, nerves, lymphoid tissue, adipose tissue and other structures play an important role in the occurrence and development of Crohn disease, and the degree of lesion is related with the disease process, surgical difficulty, the occurrence of intraoperative complications and postoperative recurrence. The optimal surgical strategy of Crohn disease based on mesenteric involvement has received great attention. Multiple retrospective studies found that extended mesenteric resection and Kono-S anastomosis potentially could reduce the rate of postoperative recurrence.

View Article and Find Full Text PDF

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!