Owing to its purity and exceptional mechanical performance, bacterial nanocellulose (BNC) is well suited for tissue engineering applications. BNC assembles as a network that features similarities with the extracellular matrix (ECM) while exhibiting excellent integrity in the wet state, suitable for suturing and sterilization. The development of complex 3D forms is shown by taking advantage of the aerobic process involved in the biogenesis of BNC at the air/culture medium interphase. Hence, solid supports are used to guide the formation of BNC biofilms that easily form auxetic structures. Such biomaterials are demonstrated as implantable meshes with prescribed opening size and infill density. The measured mechanical strength is easily adjustable (48-456 MPa tensile strength) while ensuring shape stability (>87% shape retention after 100 burst loading/unloading cycles). We further study the cytotoxicity, monocyte/macrophage pro-inflammatory activation, and phenotype to demonstrate the prospective use of BNC as supportive implants with long-term comfort and minimal biomaterial fatigue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.119198 | DOI Listing |
Int J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China. Electronic address:
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).
View Article and Find Full Text PDFPharmaceutics
December 2024
Post-Graduate Program in Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil.
: This work investigated the effect of bacterial nanocellulose (BNC) alone or with chemisorbed chlorhexidine or povidone-iodine on post-tooth extraction repair in rats undergoing bisphosphonate therapy. : Forty Wistar rats were treated with zoledronic acid, subjected to tooth extractions and allocated into groups according to the material inserted in the post-extraction socket: (1) BNC ( = 10); (2) BNC/Iodine ( = 10); (3) BNC/Chlorhex ( = 10); (4) Control ( = 10). Maxillae were dissected and macro- and microscopically analyzed.
View Article and Find Full Text PDFMolecules
January 2025
Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China.
Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, G. Bonchev Str. 10, 1113 Sofia, Bulgaria.
Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!