The one-step synthesis of glycogen-type polysaccharides from maltooctaose (G8) was accomplished based on the new findings of the catalytic mechanism of glycogen branching enzymes (GBEs) from Vibrio vulnificus, Deinococcus geothermalis, and Escherichia coli. GBEs from D. geothermalis and E. coli used maltononaose and maltotridecaose as the minimum, respectively, while V. vulnificus GBE (VvGBE) catalyzed the surprisingly small substrate, G8, into polysaccharides. Intriguingly, all three GBEs catalyzed α-1,4-transglycosylation at the early reaction stage of transglycosylation. VvGBE successfully converted the smallest substrate (G8) into two highly branched polysaccharides (HBP), in which the big polysaccharide (1.49 × 10 Da) exhibited structural properties similar to glycogen. Both HBPs had similar side chain distribution with a very short average degree of polymerization compared with mussel glycogen. As a molecular biology reagent, these nucleotide-free HBPs significantly increased the mRNA extraction efficiency of mammalian cells. Our results provide a new approach to the synthesis of novel polysaccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.119175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!