Dry extrusion pretreatment of cassava starch aided by sugarcane bagasse for improved starch saccharification.

Carbohydr Polym

Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovation - MCTI, Avenida Venezuela, 82, Rio de Janeiro, RJ 20081-312, Brazil; Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909 Rio de Janeiro, RJ, Brazil. Electronic address:

Published: June 2022

The enzymatic hydrolysis of native starch lacks efficiency because starch is mostly confined in semi-crystalline granules. To address the challenges associated with gelatinization and render native cassava starch (CS) amenable to enzymatic hydrolysis (enzyme cocktail from Aspergillus awamori and Trichoderma reesei), dry-extrusion pretreatment of CS mixed with sugarcane bagasse (SB) was studied. Results showed that among the CS:SB mass ratios studied (1:1; 1:0.5 and 1:0.25), extruded CS:SB (1:0.25) gave the highest 3-hour glucose yield (71.5%) after enzymatic hydrolysis. Extrusion reduced CS:SB (1:0.25) crystallinity by 78% and increased the intensity of all major FTIR absorption bands by 67-202%. The optimum 3-hour glucose yield from extruded CS:SB (1:0.25) hydrolysis was 74.1%, which was 330% higher than from untreated CS. The water absorption and solubility indices of the treated biomass increased by 145% and 12,640%, respectively under the optimum conditions, aiding the hydrolysis process. The dry extrudates were easy to manipulate and store.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119256DOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
12
cssb 1025
12
cassava starch
8
sugarcane bagasse
8
extruded cssb
8
3-hour glucose
8
glucose yield
8
starch
5
hydrolysis
5
dry extrusion
4

Similar Publications

LC-HRMS screening procedure for the detection of 11 different classes of prohibited substances in dried urine spots for doping control purposes.

Anal Bioanal Chem

January 2025

Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Block B, Ottergemsesteenweg 460, BE-9000, Ghent, Belgium.

Dried urine spots have recently been proposed as an alternative matrix in the anti-doping field. Drying urine may open the opportunity to limit microbial and thermal degradation of the prohibited substances during transportation to the anti-doping laboratories without the need for refrigeration or freezing. In this study, a multi-targeted initial testing procedure was developed for the determination of 237 prohibited drugs/metabolites from 11 different classes in dried urine spots.

View Article and Find Full Text PDF

Many proteins are essential food components but also major allergens. Reducing protein allergenicity while preserving its nutritional value and technofunctional properties has always been the goal of the food industry. Ultrasound (US) is a green processing method for modifying proteins.

View Article and Find Full Text PDF

Structural and physicochemical properties of debranched lotus seed starch treated with high hydrostatic pressure.

Int J Biol Macromol

December 2024

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China. Electronic address:

Lotus seeds represent a significant economic crop and are abundant in starch. To further enhance their application value, this study investigates the structural characteristics of lotus seed starch (LS) under the combined influence of pullulanase and high hydrostatic pressure (HHP). Pullulanase increased amylose content from 39.

View Article and Find Full Text PDF

Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions.

Food Chem

December 2024

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:

A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system.

View Article and Find Full Text PDF

Enzymatic hydrolysis prior to fibrillation could promote the formation of soy protein isolate (SPI) nanofibrils. However, the large amount of resulting insoluble soy protein hydrolysates (ISPH) demonstrated significantly limited fibrillation capacity. In this study, the modification of ISPH through the combination of pH and ultrasound treatment significantly enhanced their solubility and further promoted fibrillation capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!