Preparation of chitosan-cellulose-benzyl isothiocyanate nanocomposite film for food packaging applications.

Carbohydr Polym

School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China. Electronic address:

Published: June 2022

To improve the mechanical and barrier properties of cellulose and chitosan (CS) and to allow the application of volatile antibacterial benzyl isothiocyanate (BITC) in active packaging, a double-layer nanocomposite film was prepared. Cellulose nanofibers (CNF) were crosslinked with CS via genipin to build the substrate. Quaternized cellulose nanocrystals (QCNC) were synthesized for carrying BITC as the coating material. By the layer-by-layer self-assembly approach, CS-CNF/QCNC-BITC film was fabricated. This film possessed the tensile strength of 33.75 MPa, low permeabilities of oxygen (6.9 × 10 m/s·m·Pa) and moisture (1.2 × 10 g/s·m·Pa), and good antibacterial activity with the inhibition zone diameters of 4.9, 4.2 and 2.7 cm against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus. The total viable count, total volatile basic nitrogen and thiobarbituric acid-reactive substances of the chicken wrapped CS-CNF/QCNC-BITC were only 4.4 log CFU/g, 17.7 mg/100 g and 0.44 mg/kg at 14 days, indicating a potential application of CS-CNF/QCNC-BITC for food packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119234DOI Listing

Publication Analysis

Top Keywords

nanocomposite film
8
food packaging
8
preparation chitosan-cellulose-benzyl
4
chitosan-cellulose-benzyl isothiocyanate
4
isothiocyanate nanocomposite
4
film
4
film food
4
packaging applications
4
applications improve
4
improve mechanical
4

Similar Publications

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties.

View Article and Find Full Text PDF

Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and the ability to incorporate bio-active functional groups. This review highlights the synthesis, antimicrobial mechanisms, and applications of PBzs and their bio-based derivatives, focusing on sustainable materials science.

View Article and Find Full Text PDF

A Review of Sulfate Removal from Water Using Polymeric Membranes.

Membranes (Basel)

January 2025

Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada.

Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths.

View Article and Find Full Text PDF

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!