The influence of ultrasonic treatment parameters of chitin nanofibrils aqueous suspension on structure, strength and deformation properties of chitosan-based composite films and fibers was investigated. Model calculations of ultrasound-induced cavitation parameters in the aqueous suspension of the chitin nanofibrils showed that an increase in the field power up to 630 W led to destruction of the cavity, to an increase in the temperature in the vicinity of cavitation area (up to 507 °C) and, as a consequence, to destruction of chitin glycoside ring (which is confirmed by the IR data). The results of light scattering, IR spectroscopy, and electron microscopy investigations indicated that the optimal duration of ultrasonic treatment of the chitin nanofibrils aqueous solution was 4-10 min (depending on oriented state of the scaffold). Tensile strength of the composites was 130 ± 11 MPa (films), 226 ± 4.8 MPa (fibers); deformation at break was 43 ± 7.5% (films), 10 ± 0.6% (fibers).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119194DOI Listing

Publication Analysis

Top Keywords

chitin nanofibrils
16
ultrasonic treatment
12
properties chitosan-based
8
chitosan-based composite
8
nanofibrils aqueous
8
aqueous suspension
8
influence chitin
4
nanofibrils
4
nanofibrils ultrasonic
4
treatment structure
4

Similar Publications

Tannins from (black wattle) are one of the few industrially available sources of nonlignin polyphenols. The intrinsic chemical heterogeneity and high dispersity of industrial tannins complicate their use in applications where the reactivity or colloidal interactions need to be precisely controlled. Here, we employ a solubility-centered sequential fractionation to obtain homogeneous tannin fractions with a dispersity index lower than 2.

View Article and Find Full Text PDF

Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.

Biomacromolecules

December 2024

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain.

Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively.

View Article and Find Full Text PDF

Preparation of chitosan/cellulose nanofibril composite aerogel and its adsorption performance for Cu(II)-MO binary pollutant.

Int J Biol Macromol

November 2024

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Heavy metals and organic dyes commonly coexist in water, which pose a serious threat to human health. Herein, a functional aerogel for adsorption of Cu(II)-methyl orange binary-polluted system was prepared. Cellulose nanofibril (CNF) was prepared by 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-NaBr-NaClO system using abandoned pineapple leaves as the main raw material, and chitosan/cellulose nanofibril (CS/CNF) composite aerogel was constructed by sol-gel method combined with freeze-drying.

View Article and Find Full Text PDF

Evaluating the strategies to improve strength and water-resistance of chitin nanofibril assembled structures: Molecule-bridging, heat-treatment and deacidifying.

Int J Biol Macromol

November 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China. Electronic address:

Chitin nanofibril (ChiNF) is a promising building block used to fabricate chitin fibers, films or gels via self-assembly from its aqueous suspension. Although mechanical strengthening of its assembled structures has made great advances, the unsatisfactory water-resistance is still a crucial obstacle to practical application and even rarely referred to. Herein, ChiNF was prepared via deacetylation-ultrasonication treatment and the strategies of molecule-bridging, heat-treatment and deacidifying that aiming to improve the strength and water-resistance of its assembled films were evaluated.

View Article and Find Full Text PDF

One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!