While Cas9-based genome editing enabled precise and sophisticated genetic perturbations in conventional and non-conventional yeast strains, its applications for food fermentations have been extremely limited. In order to improve quality and flavor of various yeast-fermented foods, we isolated and engineered a diploid or polyploid Saccharomyces cerevisiae strain (N1) which exhibits robust sugar fermentation, strong acid tolerance, and rapid gas production from Korean Nuruk. First, RGT2 and SNF3 coding for glucose sensors were deleted to increase respiration. A bread dough fermented with the N1ΔRGT2ΔSNF3 strain showed an 18% increased volume due to higher carbon dioxide production. Second, ASP3 coding for asparaginase was overexpressed and URE2 coding for a transcriptional factor of nitrogen catabolite repression (NCR) was deleted to increase asparagine consumption. When the N1ΔURE2::P-ASP3 strain was applied to a potato dough, asparagine was rapidly depleted in the dough, resulting in potato chips with negligible amounts of acrylamide. Third, the N1ΔURE2 strain was utilized to increase levels of the amino acids which provide a savory taste during rice wine fermentation. The above genome-edited yeast strains contain no heterologous DNA. As such, they can be used to improve fermented foods with no subjection to GM regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2021.103971 | DOI Listing |
Genome Biol Evol
January 2025
Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA, USA.
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Biochemistry Program, The University of the South, Sewanee, TN, USA.
The murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
J Ind Microbiol Biotechnol
January 2025
National Center for Agricultural Utilization Research, Peoria, IL 61604, USA.
Microbial isolates from sugar crop processing facilities were tested for sensitivity to several industrial antimicrobial agents to determine optimal dosing. Hydritreat 2216 showed broad spectrum activity against all bacterial isolates as well as Saccharomyces cerevisiae. Sodium hypochlorite showed broad spectrum activity against all isolates, but at much higher effective concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!