Negative out-of-plane Poisson's ratio of bilayer graphane.

Nanotechnology

Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.

Published: April 2022

With its excellent mechanical and thermal properties, bilayer graphane is a promising material for realizing future nanoelectromechanical systems. In this study, we focus on the auxetic behavior of bilayer graphane under external loading along various directions through atomistic simulations. We numerically and theoretically reveal the mechanism of the auxeticity in terms of intrinsic interactions between carbon atoms by constructing bilayer graphane. Given that the origin of the auxeticity is intrinsic rather than extrinsic, the work provides a novel technique to control the dimensions of nanoscale bilayer graphane by simply changing the external conditions without the requirement of complex structural design of the material.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac5da0DOI Listing

Publication Analysis

Top Keywords

bilayer graphane
20
bilayer
5
graphane
5
negative out-of-plane
4
out-of-plane poisson's
4
poisson's ratio
4
ratio bilayer
4
graphane excellent
4
excellent mechanical
4
mechanical thermal
4

Similar Publications

NanoTube Construct is a web tool for the digital construction of nanotubes based on real and hypothetical single-layer materials including carbon-based materials such as graphene, graphane, graphyne polymorphs, graphidiyene and non-carbon materials such as silicene, germanene, boron nitride, hexagonal bilayer silica, haeckelite silica, molybdene disulfide and tungsten disulfide. Contrary to other available tools, NanoTube Construct has the following features: a) it is not limited to zero thickness materials with specific symmetry, b) it applies energy minimisation to the geometrically constructed Nanotubes to generate realistic ones, c) it derives atomistic descriptors (e.g.

View Article and Find Full Text PDF

Graphene is well-known for its unique combination of electrical and mechanical properties. However, its vanishing band gap limits the use of graphene in microelectronics. Covalent functionalization of graphene has been a common approach to address this critical issue and introduce a band gap.

View Article and Find Full Text PDF

With its excellent mechanical and thermal properties, bilayer graphane is a promising material for realizing future nanoelectromechanical systems. In this study, we focus on the auxetic behavior of bilayer graphane under external loading along various directions through atomistic simulations. We numerically and theoretically reveal the mechanism of the auxeticity in terms of intrinsic interactions between carbon atoms by constructing bilayer graphane.

View Article and Find Full Text PDF

Phonon dispersion in two-dimensional solids from atomic probability distributions.

J Chem Phys

December 2019

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

We propose a harmonic linear response (HLR) method to calculate the phonon dispersion relations of two-dimensional layers from equilibrium simulations at finite temperatures. This HLR approach is based on the linear response of the system, as derived from the analysis of its centroid density in equilibrium path integral simulations. In the classical limit, this approach is closely related to those methods that study vibrational properties by the diagonalization of the covariance matrix of atomic fluctuations.

View Article and Find Full Text PDF

Using density functional theory computations with van der Waals (vdW) corrections, we reveal that C-HF-C hydrogen bonding exists in graphane/fluorographene and fluorographane/fluorographane bilayers. The significant C-HF-C hydrogen bonding is strong enough to combine two separate monolayers to form the bilayer. Interestingly, both the graphane/fluorographene and fluorographane/fluorographane bilayers are metallic in the most stable stacking configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!