Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis.

Food Chem

Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.

Published: August 2022

Chinese indigenous pigs are favored for their rich flavor, which is generated through complex reactions involving lipid-oxidation-related flavor precursors. In this research, we characterized the aroma compounds and fatty acids of representative Chinese pig breeds by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and GC-ion mobility spectrometry (GC-IMS) with multivariate analysis. A total of 79 volatile compounds were identified, among which 15 compounds were selected as odorants in pork. According to multivariate statistical analysis, some odorants, including hexanal, 1-octen-3-ol, 2,3-octanedione, (E, E)-2,4-decadienal and dodecanal could be discriminative compounds explaining breed-originated differences in flavor profiles. As confirmed by partial least squares regression (PLS-R), some fatty acids, including C18:1n9c, C22:6n3 and C18:3n3, were major precursors for the formation of rich flavor in indigenous pig breeds. These results revealed that fatty acids and volatile compounds were breed-dependent, and the differences in flavor were related to the variance in the fatty acid content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.132543DOI Listing

Publication Analysis

Top Keywords

pig breeds
12
fatty acids
12
chinese indigenous
8
indigenous pig
8
multivariate analysis
8
rich flavor
8
volatile compounds
8
differences flavor
8
flavor
6
compounds
6

Similar Publications

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

Insects are used as an alternative sustainable, protein-rich ingredient in fish, pet, pig and poultry diets. The significant difference between insect meals and common protein sources is the content of chitin. The nitrogen contained in chitin, which makes up 6.

View Article and Find Full Text PDF

BEND6 promotes RNA viruses' replication by inhibiting innate immune responses.

Sci China Life Sci

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.

Innate immunity serves as a crucial defense mechanism against invading pathogens, yet its negative regulatory network remains under explored. In this study, we identify BEN domain-containing protein 6 (BEND6) as a novel negative regulator of innate immunity through a genome-scale CRISPR knockout screen for host factors essential for viral replication. We show that BEND6 exhibits characteristics of an interferon-stimulated gene (ISG), with its mRNA and protein levels upregulated by RNA virus-induced IFN-β.

View Article and Find Full Text PDF

Metabolome and RNA-seq reveal discrepant metabolism and secretory metabolism profile in skeletal muscle between obese and lean pigs at different ages.

Sci China Life Sci

January 2025

Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.

Metabolites and metabolism-related gene expression profiles in skeletal muscle change dramatically under obesity, aging and metabolic disease. Since obese and lean pigs are ideal models for metabolic research. Here, we compared metabolome and transcriptome of Longissimus dorsi (LD) muscle between Taoyuan black (TB, obese) and Duroc (lean) pigs at different ages.

View Article and Find Full Text PDF

This research aimed to characterize the mitochondrial genome of the Ghoongroo (GH) pig, a notable breed in India, along with its crossbred varieties, to elucidate their matrilineal components, evolutionary history, and implications for conservation. Seven pigs (5 GH, 2 crossbred, namely Rani and Asha) were sequenced for complete mitochondrial genome, while 24 pigs (11 GH, 6 Rani, and 7 Asha) were sequenced for the complete D-loop of the mitochondrial genome. The genome size of these pigs was determined to be 16,690 bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!