Active transport (walking and biking) has significant environmental, health, and social benefits. Despite the importance of active transport, theoretically framed research has not sufficiently considered what makes consumers walk or bike based on activity types, particularly in an Asian context. This is an important topic as it helps provides a basis for better targeted marketing and promotion to encourage greater public engagement with active transport. To fill this knowledge gap, this work applied the value-attitude-behavior (VAB) theory to understand walkers and bikers' behaviors in comparing tourism, leisure, and work activity. Results indicate that value on attitude has the greatest influence, followed by personal, and then social norm. Behavior for active transport is significantly influenced by personal norm, followed by attitude and social norm. Interestingly, from the three types of activities, the tourism group has the strongest relationship of value and attitude and the highest prediction for attitude and behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.114868 | DOI Listing |
Sci Rep
December 2024
Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038. Electronic address:
Ethnopharmacological Relevance: Type 2 diabetes mellitus (T2DM) is a metabolic disease that can lead to complications affecting multiple organs, including the liver. Gegen Qinlian Decoction (GQD) has demonstrated considerable efficacy in the management of T2DM and its complications in accordance with the tenets of modern Chinese medicine. However, the molecular mechanism by which GQD alleviates diabetic liver injury is unclear.
View Article and Find Full Text PDFDev Cell
December 2024
Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
December 2024
Department of Community Medicine, Vinayaka Mission's Homoeopathic Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Salem, India.
Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!