A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Improves Prediction Over Logistic Regression on Resected Colon Cancer Patients. | LitMetric

AI Article Synopsis

  • Surgical patients with colon cancer experience high readmission and mortality rates, prompting the need for better outcome prediction tools to improve periprocedural care.
  • This study used a national database to compare machine learning (ML) algorithms, like Random Forest and XGBoost, against traditional regression methods for predicting negative outcomes after surgery.
  • Results indicated that ML models significantly outperformed logistic regression in accuracy, highlighting their potential to enhance risk prediction and ultimately improve patient outcomes.

Article Abstract

Introduction: Despite advances, readmission and mortality rates for surgical patients with colon cancer remain high. Prediction models using regression techniques allows for risk stratification to aid periprocedural care. Technological advances have enabled large data to be analyzed using machine learning (ML) algorithms. A national database of colon cancer patients was selected to determine whether ML methods better predict outcomes following surgery compared to conventional methods.

Methods: Surgical colon cancer patients were identified using the 2013 National Cancer Database (NCDB). The negative outcome was defined as a composite of 30-d unplanned readmission and 30- and 90-d mortality. ML models, including Random Forest and XGBoost, were built and compared with conventional logistic regression. For the accounting of unbalanced outcomes, a synthetic minority oversampling technique (SMOTE) was implemented and applied using XGBoost.

Results: Analysis included 528,060 patients. The negative outcome occurred in 11.6% of patients. Model building utilized 30 variables. The primary metric for model comparison was area under the curve (AUC). In comparison to logistic regression (AUC 0.730, 95% CI: 0.725-0.735), AUC's for ML algorithms ranged between 0.748 and 0.757, with the Random Forest model (AUC 0.757, 95% CI: 0.752-0.762) outperforming XGBoost (AUC 0.756, 95% CI: 0.751-0.761) and XGBoost using SMOTE data (AUC 0.748, 95% CI: 0.743-0.753).

Conclusions: We show that a large registry of surgical colon cancer patients can be utilized to build ML models to improve outcome prediction with differential discriminative ability. These results reveal the potential of these methods to enhance risk prediction, leading to improved strategies to mitigate those risks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2022.01.012DOI Listing

Publication Analysis

Top Keywords

colon cancer
20
cancer patients
16
logistic regression
12
machine learning
8
compared conventional
8
surgical colon
8
negative outcome
8
random forest
8
patients
7
cancer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: