It is well appreciated that, differently from skeletal muscles, the heart contracts independently from neurogenic inputs. However, the speed and force of heartbeats are finely modulated during stresses, emotions, and daily activities, by the autonomic neurons (both parasympathetic and sympathetic) which highly innervate the myocardium. Despite this aspect of cardiac physiology has been known for long, research has only recently shed light on the biophysical mechanisms underlying the meticulous adaptation of heart activity to the needs of the organism. A conceptual advancement in this regard has come from the use of optogenetics, a revolutionary methodology which allows to control the activity of a given excitable cell type, with high specificity, temporal and spatial resolution, within intact tissues and organisms. The method, widely affirmed in the field of neuroscience, has more recently been exploited also in research on heart physiology and pathology, including the study of the mechanisms regulating heart rhythm. The last point is the object of this book chapter which, starting from the description of the physiology of heart rhythm automaticity and the neurogenic modulation of heart rate, makes an excursus on the theoretical basis of such biotechnology (with its advantages and limitations), and presents a series of examples in cardiac and neuro-cardiac optogenetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2245-2_13 | DOI Listing |
Ann Med
December 2025
Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
Background: Most older patients with atrial fibrillation (AF) have comorbidities. However, it is unclear whether specific comorbidity patterns are associated with adverse outcomes. We identified comorbidity patterns and their association with mortality in multimorbid older AF patients with different multidimensional frailty.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The Valsalva manoeuvre is widely recognised for its effectiveness in reverting supra-ventricular tachycardia (SVT) in patients with good coordination. However, this is not applicable in sedated ventilated patients and there is a dearth of literature regarding the application of Valsalva in unconscious patients on mechanical ventilation. The authors, for the first time, present a novel non-pharmacological method to treat SVT in critically ill patients on mechanical ventilation, employing the high positive end-expiratory pressure (PEEP) technique.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Cardiovascular Medicine, Second People's Hospital of Anhui Province, Hefei, China.
Objective: To explore the prognostic significance of Sestrin-2 and Galectin-3 levels in atrial fibrillation complicated by left atrial remodelling, aiming to offer novel insights for prevention, treatment, and follow-up strategies.
Study Design: Analytical study. Place and Duration of the Study: Department of Cardiology, Second People's Hospital of Anhui Province, Hefei, China, from January 2021 to December 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!