AI Article Synopsis

  • When ternary mixed solutions (water, acetonitrile, and ethyl acetate) flow in microchannels, unique flow patterns like inverted flow and tube radial distribution flow can be observed.
  • The study specifically investigates inverted flow using different Y-type microchannels with various mixing angles, confirming results both experimentally and through computer simulations.
  • The findings on tube radial distribution flow demonstrate how the composition of the mixed solution affects the exchange of phases, emphasizing the role of computer simulations in optimizing microfluidic device design.

Article Abstract

When ternary mixed solutions of water/acetonitrile/ethyl acetate are delivered into a microspace under laminar flow conditions, the solvent molecules show specific microfluidic flows, such as microfluidic inverted flow and tube radial distribution flow, which have been applied to novel analytical methods. In this paper, inverted flow was examined using various Y-type microchannels that had mixing angles of 0°, 90°, 180°, and 270°. Inverted flow was experimentally observed and the trigger phenomenon was also successfully expressed through computer simulations. Tube radial distribution flow, that is, annular flow, in a capillary tube is reported to cause exchange of the inner and outer phases based on the solvent composition of the ternary mixed solution. Tube radial distribution flow for an organic solvent-rich inner and a water-rich outer phases, as well as for a water-rich inner and an organic solvent-rich outer phases, could be well recreated by computer simulations for a ternary mixed solution. This highlights the effectiveness of computer simulations for such flow scenarios and will allow optimization of the operating conditions and design of microfluidic analytical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s44211-022-00083-wDOI Listing

Publication Analysis

Top Keywords

ternary mixed
16
computer simulations
16
inverted flow
12
tube radial
12
radial distribution
12
distribution flow
12
outer phases
12
flow
9
mixed solutions
8
solutions water/acetonitrile/ethyl
8

Similar Publications

A First-Principles Thermodynamic Model for the Ba-Zr-S System in Equilibrium with Sulfur Vapor.

ACS Appl Energy Mater

December 2024

Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8QH, United Kingdom.

The chalcogenide perovskite BaZrS has strong visible light absorption and high chemical stability, is nontoxic, and is made from earth-abundant elements. As such, it is a promising candidate material for application in optoelectronic technologies. However, the synthesis of BaZrS thin-films for characterization and device integration remains a challenge.

View Article and Find Full Text PDF

Secondary aluminum dross self-heating enhances hazardous waste vitrification.

Waste Manag

December 2024

School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China. Electronic address:

This study demonstrates the potential of secondary aluminum dross (SAD) to enhance the vitrifying hazardous waste incineration fly ash (FA) and bottom slag (BS). Based on the CaO-SiO-AlO ternary phase diagram, a liquid phase can be achieved at relatively low temperatures by carefully adjusting the AlO content, particularly when the CaO to SiO ratio is around 0.66.

View Article and Find Full Text PDF

The pristine phases SS1(ZnO), SS2(MnO), and SS3 (CuO) photocatalysts and mixed phases of ZnO-based nanocomposites were synthesized by the sol-gel method. Whereas SS4 (g-CN) was prepared through polymerization of urea. The synthesized photocatalysts were characterized using TGA-DTA, XRD, DRS, PL, DLS, FTIR, SEM, TEM, and HRTEM.

View Article and Find Full Text PDF

Assembly of Four Ternary Polyoxometalate Aggregates by Integrating Presynthesized {XWNbO} (X = Si/Ge) Units Using Molybdenum-Oxo Clusters.

Inorg Chem

December 2024

Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.

Polyoxometalates (POMs) have good potential for applications in different fields, including conducting materials, optics, and electrocatalysis. Of particular significance is the synthesis and development of addendum POMs. Molybdenum-oxo clusters, which are renowned for their diverse structures and electronic properties, were utilized to facilitate the synthesis of innovative materials.

View Article and Find Full Text PDF

Titanate-polyurethane-chitosan ternary nanocomposite as an efficient coating for steel against corrosion.

Sci Rep

December 2024

Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.

In this study, a titanate-polyurethane-chitosan ternary nanocomposite was prepared by physical mixing. Sodium titanate nanotubes (Na-TNTs) were prepared by the hydrothermal method, and chitosan was extracted from shrimp shell. Na-TNTs were mixed with polyurethane (PU) of different ratios by weight, and chitosan was added after optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!