Recently food shortage has become the major flagging scenario around the globe. To resolve this challenge, there is dire need to significantly increase crop productivity per unit area. In the present study, 24 genotypes of rice were grown in pots to assess their tillering number, number of primary and secondary branches per panicle, number of grains per panicle, number of grains per plant, and grain yield, respectively. In addition, the potential function of miR156 was analyzed, regulating seed sequence in rice. Furthermore, OsSPL14 gene for miR156 was sequenced to identify additional mutations within studied region. The results demonstrated Bas-370 and L-77 showed highest and lowest tillers, respectively. Bas-370, Rachna basmati, Bas-2000, and Kashmir Basmati showed high panicle branches whereas, L-77, L-46, Dilrosh, L-48, and L-20 displayed lowest panicle branches. Bas-370 and four other studied accessions contained C allele whereas, L-77 and 18 other investigated accessions had heterozygous (C and T) alleles in their promoter region. C-T allelic mutation was found in 3rd exon of the OsSPL14 gene. The sequence analysis of 12 accessions revealed a novel mutation (C-T) present ~2bp upstream and substitution of C-A allele. However, no significant correlation for novel mutation was found for tillering and panicle branches in studied rice accessions. Taken together present results suggested novel insight into the binding of miR156 to detected mutation found in 3rd exon of the OsSPL14 gene. Nevertheless, L-77, L-46, Dilrosh, L-48, and L-20 could be used as potential breeding resource for improving panicle architecture contributing yield improvement of rice crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920263 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264478 | PLOS |
Plant Cell Rep
December 2024
CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.
View Article and Find Full Text PDFPlant Cell Rep
November 2024
ICAR-National Rice Research Institute, Cuttack, 753006, India.
A long tracrRNA (tracr-L), which naturally act as single guide RNA, and its truncated version, Δtracr-L, from S. pyogenes, efficiently induce Cas9-mediated double-strand breaks (DSBs) in plant genomic loci, as demonstrated by in vitro cleavage assay and protoplast transfection. CRISPR-Cas system provides a form of immune memory in prokaryotes and archaea, protecting them against viruses and foreign genetic elements.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
Nat Commun
June 2024
Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China.
Cytosine base editors (CBEs) and adenine base editors (ABEs) enable precise C-to-T and A-to-G edits. Recently, ABE8e, derived from TadA-8e, enhances A-to-G edits in mammalian cells and plants. Interestingly, TadA-8e can also be evolved to confer C-to-T editing.
View Article and Find Full Text PDFRice (N Y)
December 2023
Institute of Crop Sciences, National Agriculture & Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan.
Root system architecture plays a crucial role in nutrient and water absorption during rice production. Genetic improvement of the rice root system requires elucidating its genetic control. Genome-wide association studies (GWASs) have identified genomic regions responsible for rice root phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!