Tissue-level mechanics (e.g., stress and strain) are important factors governing tissue remodeling and development of knee osteoarthritis (KOA), and hence, the success of physical rehabilitation. To date, no clinically feasible analysis toolbox has been introduced and used to inform clinical decision making with subject-specific in-depth joint mechanics of different activities. Herein, we utilized a rapid state-of-the-art electromyography-assisted musculoskeletal finite element analysis toolbox with fibril-reinforced poro(visco)elastic cartilages and menisci to investigate knee mechanics in different activities. Tissue mechanical responses, believed to govern collagen damage, cell death, and fixed charge density loss of proteoglycans, were characterized within 15 patients with KOA while various daily activities and rehabilitation exercises were performed. Results showed more inter-participant variation in joint mechanics during rehabilitation exercises compared to daily activities. Accordingly, the devised workflow may be used for designing subject-specific rehabilitation protocols. Further, results showed the potential to tailor rehabilitation exercises, or assess capacity for daily activity modifications, to optimally load knee tissue, especially when mechanically-induced cartilage degeneration and adaptation are of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2022.3159685DOI Listing

Publication Analysis

Top Keywords

rehabilitation exercises
12
musculoskeletal finite
8
finite element
8
element analysis
8
analysis toolbox
8
joint mechanics
8
mechanics activities
8
daily activities
8
rehabilitation
5
tailored rehabilitation
4

Similar Publications

Background: There is no strong evidence demonstrating whether or not aerobic exercise in conjunction with resistance exercise improves metabolic diabetes markers in postmenopausal women.

Objective: To evaluate the effect of aerobic exercise and resistance training on metabolic markers in postmenopausal women with type 2 diabetes mellitus (T2DM) by means of a systematic review and meta-analysis.

Methods: The searches were completed using EMBASE, MEDLINE/PubMed, Scopus and Web of Science databases.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely related to SARS-CoV and uses angiotensin-converting enzyme 2 as its cellular receptor. In early 2020, reports emerged linking CoV disease 2019 (COVID-19) to olfactory and gustatory disturbances. These disturbances could be attributed to virus-induced damage to olfactory neurons or immune responses, thereby affecting sensory functions.

View Article and Find Full Text PDF

: Chronic pain affects about 20% of total knee arthroplasty (TKA) patients, with high pain catastrophizing being a key predictor. Screening and addressing this modifiable factor may improve postoperative outcomes. : We aimed to compare the effectiveness of two preoperative home-based multimodal physical therapy interventions on pain catastrophizing in high-catastrophizing TKA patients.

View Article and Find Full Text PDF

Cardiovascular diseases are a leading cause of death, and psychosocial stress is considered a contributing factor to these issues. With the rising number of heart surgeries, proper rehabilitation post-surgery is essential. Previous studies have demonstrated the positive impact of yoga and transcendental meditation on the cardiovascular system.

View Article and Find Full Text PDF

The objective of this study was to assess the course of rehabilitation of patients hospitalized in the cardiac rehabilitation unit after surgery for acute Stanford type A aortic dissection, extending beyond the ascending aorta, and comparing these findings with those for patients who, after the same type of surgery, had no remaining dissection. The aim was to develop an optimal cardiac rehabilitation model for this patient population, given the lack of clear guidelines. Additionally, the study aimed to evaluate their one-year survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!