A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gait Entrainment to Torque Pulses From a Hip Exoskeleton Robot. | LitMetric

Robot-aided locomotor rehabilitation has proven challenging. To facilitate progress, it is important to first understand the neuro-mechanical dynamics and control of unimpaired human locomotion. Our previous studies found that human gait entrained to periodic torque pulses at the ankle when the pulse period was close to preferred stride duration. Moreover, synchronized gait exhibited a constant phase relation with the pulses so that the robot provided mechanical assistance. To test the generality of mechanical gait entrainment, this study characterized unimpaired human subjects' responses to periodic torque pulses during overground walking. The intervention was applied by a hip exoskeleton robot, Samsung GEMS-H. Gait entrainment was assessed based on the time-course of the phase at which torque pulses occurred within each stride. Experiments were conducted for two consecutive days to evaluate whether the second day elicited more entrainment. Whether entrainment was affected by the difference between pulse period and preferred stride duration was also assessed. Results indicated that the intervention evoked gait entrainment that occurred more often when the period of perturbation was closer to subjects' preferred stride duration, but the difference between consecutive days was insignificant. Entrainment was accompanied by convergence of pulse phase to a similar value across all conditions, where the robot maximized mechanical assistance. Clear evidence of motor adaptation indicated the potential of the intervention for rehabilitation. This study quantified important aspects of the nonlinear neuro-mechanical dynamics underlying unimpaired human walking, which will inform the development of effective approaches to robot-aided locomotor rehabilitation, exploiting natural dynamics in a minimally-encumbering way.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2022.3155770DOI Listing

Publication Analysis

Top Keywords

gait entrainment
16
torque pulses
16
unimpaired human
12
preferred stride
12
stride duration
12
hip exoskeleton
8
exoskeleton robot
8
robot-aided locomotor
8
locomotor rehabilitation
8
neuro-mechanical dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!