2,5-Bis(6-methyl-2-benzoxazolyl)phenol () exhibits an ultrafast excited-state intramolecular proton transfer (ESIPT) when isolated in supersonic jets, whereas in condensed phases the phototautomerization is orders of magnitude slower. This unusual situation leads to nontypical photophysical characteristics: dual fluorescence is observed for in solution, whereas only a single emission, originating from the phototautomer, is detected for the ultracold isolated molecules. In order to understand the completely different behavior in the two regimes, detailed photophysical studies have been carried out. Kinetic and thermodynamic parameters of ESIPT were determined from stationary and transient picosecond absorption and emission for in different solvents in a broad temperature range. These studies were combined with time-dependent- density functional theory quantum-chemical modeling. The excited-state double-well potential for and its methyl-free analogue were calculated by applying different hybrid functionals and compared with the results obtained for another proton-transferring molecule, 2,5-bis(5-ethyl-2-benzoxazolyl)hydroquinone (). The results lead to the model that explains the difference in proton-transfer properties of in vacuum and in the condensed phase by inversion of the two lowest singlet states occurring along the PT coordinate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958588PMC
http://dx.doi.org/10.1021/acs.jpca.1c10030DOI Listing

Publication Analysis

Top Keywords

proton transfer
8
solving puzzle
4
puzzle unusual
4
unusual excited-state
4
excited-state proton
4
transfer 25-bis6-methyl-2-benzoxazolylphenol
4
25-bis6-methyl-2-benzoxazolylphenol 25-bis6-methyl-2-benzoxazolylphenol
4
25-bis6-methyl-2-benzoxazolylphenol exhibits
4
exhibits ultrafast
4
ultrafast excited-state
4

Similar Publications

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A

January 2025

Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.

This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

The electrochemical proton reactivity of transition metal complexes has received intensive attention in catalyst research. The proton-coupled electron transfer (PCET) process, influenced by the coordination geometry, determines the catalytic reaction mechanisms. Additionally, the p value of a proton source, as an external factor, plays a crucial role in regulating the proton transfer step.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!