Chemodynamic therapy (CDT) has attracted increasing attention in tumor treatment but is limited by insufficient endogenous HO. Moreover, it is challenging for monotherapy to achieve a satisfactory outcome due to tumor complexity. Herein, we developed an intelligent nanoplatform that could respond to a tumor microenvironment to induce efficient CDT without complete dependence on HO and concomitantly generate chemotherapy and oncosis therapy (OT). The nanoplatform was constructed by a calcium- and iron-doped mesoporous silica nanoparticle (CFMSN) loaded with dihydroartemisinin (DHA). After entering into cancer cells, the nanoplatform could directly convert the intracellular HO into toxic •OH due to the Fenton-like activity of CFMSN. Meanwhile, the acidic microenvironment and endogenous chelating molecules triggered Ca and Fe release from the nanoplatform, causing particle collapse with accompanying DHA release for chemotherapy. Simultaneously, the released Ca induced intracellular Ca-overloading for OT, which was further enhanced by DHA, while the released Fe was reduced to reactive Fe by intracellular glutathione, guaranteeing efficient Fenton reaction-mediated CDT. Moreover, Fe cleaved the peroxy bonds of DHA to generate C-centered radicals to further amplify CDT. Both in vitro and in vivo results confirmed that the nanoplatform exhibited excellent anticancer efficacy via the synergistic effect of multi therapeutic modalities, which is extremely promising for high-efficient cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c01913DOI Listing

Publication Analysis

Top Keywords

intelligent nanoplatform
8
multi therapeutic
8
therapeutic modalities
8
cancer therapy
8
nanoplatform
5
nanoplatform multi
4
modalities synergistic
4
synergistic cancer
4
therapy
4
therapy chemodynamic
4

Similar Publications

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid Inactivation of .

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

() is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization . Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an -specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH.

View Article and Find Full Text PDF

Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.

View Article and Find Full Text PDF

A preclinical design approach for translation of biohybrid photosensitive nanoplatform for photodynamic therapy of breast cancer.

J Control Release

December 2024

Laboratory of Microfluidics and Medical Microsystems, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Article Synopsis
  • - The study presents a two-phase approach to develop and characterize novel hybrid nano-photosensitizers for targeting breast cancer, integrating molecular simulations with laboratory and animal experiments for improved model accuracy.
  • - In the first phase, researchers used artificial intelligence and molecular docking to identify pharmacokinetic weaknesses and synthesized biohybrid nanoplatforms, assessing their stability in vivo.
  • - The second phase optimized photodynamic treatment variables and demonstrated that the optimized nano-photosensitizer effectively killed triple-negative cancer cells in both static and dynamic cultures, indicating a promising strategy for enhancing cancer treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!