AI Article Synopsis

Article Abstract

Magnetic resonance elastography (MRE) is a technique for determining the mechanical response of soft materials using applied harmonic deformation of the material and a motion-sensitive magnetic resonance imaging sequence. This technique can elucidate significant information about the health and development of human tissue such as liver and brain, and has been used on phantom models (e.g., agar, silicone) to determine their suitability for use as a mechanical surrogate for human tissues in experimental models. The applied harmonic deformation used in MRE is generated by an actuator, transmitted in bursts of a specified duration, and synchronized with the magnetic resonance signal excitation. These actuators are most often a pneumatic design (common for human tissues or phantoms) or a piezoelectric design (common for small animal tissues or phantoms). Here, we describe how to design and assemble both a pneumatic and a piezoelectric MRE actuator for research purposes. For each of these actuator types, we discuss displacement requirements, end-effector options and challenges, electronics and electronic-driving requirements and considerations, and full MRE implementation. We also discuss how to choose the actuator type, size, and power based on the intended material and use. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Design, construction, and implementation of a convertible pneumatic MRE actuator for use with tissues and phantom models Basic Protocol 2: Design, construction, and implementation of a piezoelectric MRE actuator for localized excitation in phantom models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517172PMC
http://dx.doi.org/10.1002/cpz1.379DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
16
design construction
12
construction implementation
12
phantom models
12
mre actuator
12
resonance elastography
8
actuator purposes
8
applied harmonic
8
harmonic deformation
8
human tissues
8

Similar Publications

Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

Photorealistic rendering of fetal faces from raw magnetic resonance imaging data.

Ultrasound Obstet Gynecol

January 2025

Decision and Bayesian Computation, Neuroscience & Computational Biology Departments, CNRS UMR 3571, Institut Pasteur, Paris, France.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!