Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here we calculate T →S transition energies in nine phosphorescent iridium complexes using the iterative qubit coupled cluster (iQCC) method to determine if quantum simulations have any advantages over classical methods. These simulations would require a gate-based quantum computer with at least 72 fully-connected logical qubits. Since such devices do not yet exist, we demonstrate the iQCC method using a purpose-built quantum simulator on classical hardware. The results are compared to a selection of common DFT functionals, ab initio methods, and empirical data. iQCC is found to match the accuracy of the best DFT functionals, but with a better correlation coefficient, demonstrating that it is better at predicting the structure-property relationship. Results indicate that the iQCC method has the required accuracy to design organometallic complexes when deployed on emerging quantum hardware and sets an industrially relevant target for demonstrating quantum advantage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202116175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!