Gene co-expression reveals the modularity and integration of C4 and CAM in Portulaca.

Plant Physiol

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.

Published: June 2022

C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day-night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157154PMC
http://dx.doi.org/10.1093/plphys/kiac116DOI Listing

Publication Analysis

Top Keywords

cam
11
gene co-expression
8
portulaca
6
gene
4
co-expression reveals
4
reveals modularity
4
modularity integration
4
integration cam
4
cam portulaca
4
portulaca photosynthesis
4

Similar Publications

Circadian Misalignment Impacts Cardiac Autonomic Modulation in Adolescence.

Sleep

January 2025

Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.

Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.

Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.

View Article and Find Full Text PDF

Introduction: Cancer patients often face challenges in managing their disease, particularly with regard to contraindications related to medications, foods, and physical activity, which can negatively affect treatment outcomes. This study aimed to evaluate cancer patients' awareness of these contraindications and to explore the influence of sociodemographic factors, support systems, comorbidities, and medication use on their knowledge.

Methods: A cross-sectional prospective study was conducted with 125 cancer patients in Saudi Arabia between December 2022 and February 2023.

View Article and Find Full Text PDF

Objective: To investigate the effect of cervical margin relocation with four different injectable restorative materials on the fracture resistance of molars receiving mesio-occluso-distal CAD/CAM nanoceramic onlay restorations.

Materials And Methods: One hundred and five sound mandibular molars received a standardized mesio-occluso-distal onlay preparation, with cervical margins located 2 mm apical to the cemento-enamel junction. The molars were randomly allocated into five groups (n = 21) according to the cervical relocating materials used: Group I had no cervical margin relocation; Group II used a highly viscous glass ionomer; Group III used a highly-filled injectable resin composite; Group IV used a resin-modified glass ionomer; and Group V used a bioactive ionic resin.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!