The genetic causes of idiopathic premature ovarian insufficiency (POI) and nonobstructive azoospermia (NOA) remain unclear. We performed whole-exome sequencing (WES) in members of a consanguineous family with two POI and two NOA patients to screen for potential pathogenic variants for familial POI and NOA. And a homozygous variant in SPATA22 (c.400C>T:p.R134X) was identified. Histological analysis and spermatocyte spreading assay demonstrated that the spermatogenesis was arrested at a zygotene-like stage in the proband with NOA. The candidate gene was further screened in the in-house WES database of idiopathic POI-affected patients. One additional compound heterozygous variant in SPATA22 (c.900+1G>A and c.31C>T:p.R11X) was found in one patient with sporadic POI and validated by minigene assay. Thus, this is the first report identifying SPATA22 as the causative gene for human POI. Combined with the observations in the familial patient with NOA, our findings highlighted the essential role of meiotic HR genes in gametogenesis and gonadal function maintenance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cge.14129 | DOI Listing |
J Assist Reprod Genet
January 2025
Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.
Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.
View Article and Find Full Text PDFAmenorrhea is a common symptom of a whole range of nosologies among women of reproductive age, which can accompany any endocrinopathy in the stage of decompensation. In all the diversity of various links in the pathogenesis of reproductive disorders, the problem of immunopathology remains a little aside, however, the significance of these disorders is underestimated. This publication provides an overview of immune system abnormalities in a women with amenorrhea.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
Radiotherapy is a critical treatment for cancer but poses significant risks to ovarian tissue, particularly in young females, leading to premature ovarian failure (POF). This study examines the therapeutic potential of etoricoxib nanostructured lipid carriers (ETO-NLC) in mitigating radiation-induced ovarian damage in female rats. Twenty-four female rats were randomly assigned to four groups: a control group receiving normal saline, a group exposed to a single dose of whole-body gamma radiation (6 Gy), a group treated with etoricoxib (10 mg/kg) post-radiation, and a group treated with ETO-NLC for 14 days following radiation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt.
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!