Shape-specific microfabricated particles for biomedical applications: a review.

Drug Deliv Transl Res

Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy.

Published: August 2022

The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242933PMC
http://dx.doi.org/10.1007/s13346-022-01143-4DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
discoidal polymeric
8
polymeric particles
8
particles
5
shape-specific microfabricated
4
microfabricated particles
4
particles biomedical
4
applications
4
biomedical applications
4
applications review
4

Similar Publications

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics.

View Article and Find Full Text PDF

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!