Coal is characterized by a complex pore-fracture network and functional groups, which are derived from various geological origins and which further affect methane adsorption. To explore the relationship between the geological origins of pore-fractures and methane adsorption behaviors, we conducted pore structure tests and adsorption isotherms on six Qinshui high-rank coals. The pores and fractures were observed using an optical microscope (OM), a field emission scanning electron microscope (FESEM), and a high-resolution transmission electron microscope (HRTEM), and the pore structure parameters were determined using mercury intrusion and low-pressure N and CO adsorption. High-pressure CH adsorption isotherms were obtained at 30 °C using the manometric method. Results show that the Qinshui high-rank coals develop five stages of pore size distribution, consisting of the smaller micropore stage (0.3-1 nm), the larger micropore and smaller mesopore stage (1-10 nm), the mesopore and smaller macropore stage (10-110 nm), the microfracture stage (0.11-40 μm), and the larger macropore stage (>40 μm). The micropores dominate the total pore volume (PV) and specific surface area (SSA). Pores and fractures of various morphologies and sizes have different geological origins, which are related to coalification and stress field evolution. Methane adsorption on coals mainly occurs in the micropores as a form of volume filling. The maximum pore size for complete gas filling (MPSCGF) ranges from 0.60 to 0.88 nm in Qinshui high-rank coals. The coal-forming geological processes, such as coalification and stress field evolution, contribute to various pores and fractures, which show different pore sizes and functional groups. The geological origins of pores and fractures control the methane adsorption behaviors in coals by way of the pore size and functional groups. Surface coverage-related methane adsorption behavior occurs in fractures, primary pores, and large-scale secondary pores, while micropore filling is the methane adsorption behavior in macromolecular pores and small-scale secondary pores. The aim of this study is to provide a new insight into the methane adsorption on coals from the geological process of the formation and modification of pores and fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908364PMC
http://dx.doi.org/10.1021/acsomega.1c07402DOI Listing

Publication Analysis

Top Keywords

methane adsorption
32
geological origins
20
pores fractures
20
adsorption behaviors
12
functional groups
12
qinshui high-rank
12
high-rank coals
12
pore size
12
adsorption
11
pores
9

Similar Publications

Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM.

View Article and Find Full Text PDF

The advancement of high-value CH4 purification technology within the natural gas industry is paramount for industrial processes. Herein, we constructed ZJNU-402, a new porous material characterized by permanent porosity, as an effective adsorbent for separating C3H8/CH4 and C2H6/CH4 mixtures. The findings reveal an outstanding C3H8 adsorption capacity of 68 cm3 g-1 and a moderate C2H6 adsorption rate of 42 cm3 g-1, with a notably lower CH4 adsorption rate of 11 cm3 g-1.

View Article and Find Full Text PDF

Direct Photocatalytic Oxidation of Methane to Formic Acid with High Selectivity via a Concerted Proton-Electron Transfer Process.

J Am Chem Soc

January 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.

Light-driven direct conversion of methane to formic acid is a promising approach to convert methane to value-added chemicals and promote sustainability. However, this process remains challenging due to the complex requirements for multiple protons and electrons. Herein, we report the design of WO-based photocatalysts modified with Pt active sites to address this challenge.

View Article and Find Full Text PDF

Investigation of the Photocatalytic Activity of Copper-Modified Commercial Titania (P25) in the Process of Carbon Dioxide Photoreduction.

Materials (Basel)

December 2024

Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland.

The photocatalytic reduction of CO to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO reduction efficiency in a gas-phase batch photoreactor under UV-Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor.

View Article and Find Full Text PDF

Methane Adsorption in Heterogeneous Potential Wells of Coal: Characterization Model and Applications.

Langmuir

January 2025

Key Laboratory of Insitu Property improving Mining of Ministry of Education, Taiyuan University of Technology, No,18 Xinkuangyuan Road, Wanbailin District, Taiyuan, Shanxi 030024, P. R. China.

In terms of the phenomenon of nonuniformity adsorption energy between methane and a natural heterogeneous coal surface, a heterogeneous potential well model is established in this study based on adsorption science and molecular dynamics theories. This model describes the methane adsorption positions in coal pores as a three-dimensional space composed of adsorption equipotential surfaces with varying depths of potential well, which emphasizes the heterogeneous distribution of methane adsorption potential well depths in coal and accurately describes the spatial distribution and energy states of methane molecules during methane adsorption and desorption in naturally heterogeneous coal. By taking the residual sum of squares (RSS) and Pearson correlation coefficient as indicators, the fitting accuracies of the Langmuir model and the heterogeneous potential well model for isothermal adsorption and desorption curves are compared so that the superiority of the heterogeneous potential well model in describing the adsorption and desorption of methane in natural coal is confirmed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!