Background And Purpose: Radiation therapy (RT) is commonly indicated for treatment of prostate cancer (PC). Biologicallyoptimised RT for PC may improve disease-free survival. This requires accurate spatial localisation and characterisation of tumour lesions. We aimed to generate a statistical, voxelised biological model to complement multiparametric MRI data to facilitate biologically-optimised RT.
Material And Methods: Ex vivo prostate MRI and histopathological imaging were acquired for 63 PC patients. These data were co-registered to derive three-dimensional distributions of graded tumour lesions and cell density. Novel registration processes were used to map these data to a common reference geometry. Voxelised statistical models of tumour probability and cell density were generated to create the PC biological atlas. Cell density models were analysed using the Kullback-Leibler divergence to compare normal vs. lognormal approximations to empirical data.
Results: A reference geometry was constructed using ex vivo MRI space, patient data were deformably registered using a novel anatomy-guided process. Substructure correspondence was maintained using peripheral zone definitions to address spatial variability in prostate anatomy between patients. Three distinct approaches to interpolation were designed to map contours, tumour annotations and cell density maps from histology into ex vivo MRI space. Analysis suggests a log-normal model provides a more consistent representation of cell density when compared to a linear-normal model.
Conclusion: A biological model has been created that combines spatial distributions of tumour characteristics from a population into three-dimensional, voxelised, statistical models. This tool will be used to aid the development of biologically-optimised RT for PC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913349 | PMC |
http://dx.doi.org/10.1016/j.phro.2022.02.011 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
Department of Radiology, Samut Sakhon Hospital, 74000, Samut Sakhon, Thailand.
Objective: This study aimed to evaluate the correlations between complete blood count (CBC) during radiotherapy and patient and treatment factors.
Patients And Methods: Data of cancer patients, including age, sex, concurrent chemotherapy (CCRT), radiotherapy dose (equivalent dose in 2‑Gy fractions with an alpha/beta value of 10 Gy, EQD2Gy10), radiotherapy location, and baseline CBC were collected. Linear regression was used to determine results during radiation.
Vet Med Sci
January 2025
Faculty of Veterinary Medicine, Department of Animal Breeding and Husbandry, Ondokuz Mayıs University, Samsun, Turkey.
Background: Ration composition may significantly impact the nutrient absorption, duodenal parameters, intestinal health and feed efficiency of animals.
Objectives: The objective of this study was to analyse the impact of concentrate- and forage-based diets on essential morphological parameters of the duodenum, including villus height, villus width, crypt depth and goblet cell density, in three different lamb breeds.
Methods: Forty-five lambs, aged between 2.
ACS Nano
January 2025
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.
View Article and Find Full Text PDFCrit Care Explor
January 2025
Department of Pediatrics, Johns Hopkins University, Baltimore, MD.
Objectives: Exploiting the complete blood count (CBC) with differential (CBC-diff) for early sepsis detection has practical value for emergency department (ED) care, especially for those without obvious presentations. The objective of this study was to develop the CBC Sepsis Index (CBC-SI) that incorporates monocyte distribution width (MDW) to enhance rapid sepsis screening.
Design: A retrospective observational study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!