A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Asynchronous changes of normal lung lobes during respiration based on quantitative computed tomography (CT). | LitMetric

Background: This study aimed to explore the coordinated and independent actions of lung lobes during respiration using quantitative computed tomography (CT) in order to increase our understanding of pulmonary anatomy.

Methods: Cases for whom test results showed normal pulmonary function tests (PFTs) results, and normal paired inspiratory-expiratory chest CT findings, as assessed by 2 radiologists, were retrospectively included in this study. From the chest CT results, we measured quantitative indices of lung volume (LV) and mean lung density (MLD) for the total lung (TL), left lung (LL), right lung (RL), and 5 lobes in inspiratory and expiratory phases. The differences of these measures between bilateral lungs and among the lobes were evaluated to study whether they were consistent or different during respiration.

Results: A total of 70 cases were included {median age of 49.5 [interquartile range (IQR), 38.0 to 60.3] years; 32 males; 38 females}. Overall, the inspiratory and expiratory volumes of the LL were smaller than those of the RL (both P<0.001). For the ventilation workload (, which indicates the ratio of lobar volume to total LV), the end-expiratory volume ratio ( ) of the LL was 0.44 (IQR, 0.43 to 0.46), while the end-inspiratory volume ratio ( ) had risen to 0.46 (IQR, 0.45 to 0.47) (P<0.001). Comparing the 5 lobes, not all lobes shared the same LV. However, the left lower lobe (LLL) and right lower lobe (RLL) showed some similarities. The and was higher than and , respectively (both P<0.001), while the ratios of the other lobes reduced. The pairwise mean absolute difference (PMAD) on and of the bilateral lower lobes was low in inspiration (0.0288) and expiration (0.0346). The MLD of bilateral lower lobes showed consistency in inspiration or in expiration (inspiration: P>0.999; expiration: P=0.975). In addition, the PMADs between the right middle lobe (RML) and other lobes were significantly larger than the PMAD between other pairs of lobes in both inspiration and expiration. Beyond that, the expiratory MLD of RML [-789.6 (IQR, -814 to -762.05) HU] was the lowest among the 5 lobes.

Conclusions: We found that the LL assumes a higher workload during ventilation than it does during respiration. The 5 normal lobes were non-synchronous during respiration and contributed differently to ventilation. The bilateral lower lobes showed similarities and had a high-ventilation function, while and the LV and MLD of the RML showed the least changes within a respiration cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899950PMC
http://dx.doi.org/10.21037/qims-21-348DOI Listing

Publication Analysis

Top Keywords

lung lobes
12
lobes respiration
8
quantitative computed
8
computed tomography
8
inspiratory expiratory
8
lung
7
asynchronous changes
4
changes normal
4
normal lung
4
lobes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!