Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper demonstrates a method to transform and link textual information scraped from companies' websites to the scientific body of knowledge. The method illustrates the benefit of Natural Language Processing (NLP) in creating links between established economic classification systems with novel and agile constructs that new data sources enable. Therefore, we experimented on the European classification of economic activities (known as NACE) on sectoral and company levels. We established a connection with Microsoft Academic Graph hierarchical topic modeling based on companies' website content. Central to the operationalization of our method are a web scraping process, NLP and a data transformation/linkage procedure. The method contains three main steps: data source identification, raw data retrieval, and data preparation and transformation. These steps are applied to two distinct data sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914545 | PMC |
http://dx.doi.org/10.1016/j.mex.2022.101650 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!