The NAC Transcription Factor Induces Aerial Rosette Development and Leaf Senescence in Arabidopsis.

Front Plant Sci

Departamento de Biotecnología y Bioingeniería, Laboratorio de Biología Molecular de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.

Published: February 2022

CmNACP1 mRNA has been shown to move long distance through the phloem in (pumpkin) and through a graft junction. Whereas the phloem transport of several different mRNAs has been documented in other systems as well, its function remains, for most of these RNAs, largely unknown. To gain insight into the possible role of these RNAs, we searched for the closest homologs of in Arabidopsis, a model plant much more amenable for analysis. A phylogenetic approach using the predicted NAC domain indicated that ANAC059, ANAC092, ANAC079, ANAC100, ANAC046, and ANAC087 form a single clade with CmNACP1. In the present work, we analyzed the possible function of the gene in more detail. The promoter region of this gene directed expression in the vasculature, and also in trichomes, stem, apexes, and developing flowers which supports the notion that and are orthologs. Overexpression of the gene induced increased branching in inflorescence stem, and also development of ectopic or aerial rosettes in T1 and T2 plants. Furthermore, overexpression of leads to accelerated leaf senescence in 44 days post-germination (dpg). Interestingly, a similar phenotype was observed in plants expressing the gene upstream region, also showing an increase in transcript levels. Finally, the results shown in this work indicate a role for in leaf senescence and also in rosette development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905224PMC
http://dx.doi.org/10.3389/fpls.2022.818107DOI Listing

Publication Analysis

Top Keywords

leaf senescence
12
rosette development
8
nac transcription
4
transcription factor
4
factor induces
4
induces aerial
4
aerial rosette
4
development leaf
4
senescence arabidopsis
4
arabidopsis cmnacp1
4

Similar Publications

Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly.

View Article and Find Full Text PDF

WRKY45 positively regulates salinity and osmotic stress responses in Arabidopsis.

Plant Physiol Biochem

December 2024

College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China. Electronic address:

Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis.

View Article and Find Full Text PDF

Berberine Derivative B68 Promotes Tumor Immune Clearance by Dual-Targeting BMI1 for Senescence Induction and CSN5 for PD-L1 Degradation.

Adv Sci (Weinh)

December 2024

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Promoting tumor cell senescence arrests the cell cycle of tumor cells and activates the immune system to eliminate these senescent cells, thereby suppressing tumor growth. Nevertheless, PD-L1 positive senescent tumor cells resist immune clearance and possess the ability to secret various cytokines and inflammatory factors that stimulate the growth of tumor cells. Consequently, drugs capable of both triggering senescence in tumor cells and concurrently diminishing the expression of PD-L1 to counteract immune evasion are urgently needed.

View Article and Find Full Text PDF

Chlorophyll and topographic patterns demonstrate stress conditions drive the brightness of autumn leaf colour.

Plant Biol (Stuttg)

December 2024

Echigo-Matsunoyama Museum of Natural Science 'Kyororo', Tokamachi, Niigata, Japan.

Autumn leaf colour brightness is an important cultural ecosystem service. As its spatial patterns and ecophysiological mechanisms remain unclear, we analysed relationships among autumn leaf colour brightness, late summer chlorophyll content, and topographic position in both canopy-based micro-scale analysis and site-based macro-scale analysis. Multispectral drone observations were made in three Fagus crenata forests at elevations of 300, 600, and 900 m in Niigata Prefecture, Japan.

View Article and Find Full Text PDF

As a new plant hormone, strigolactone not only promotes leaf senescence, inhibits plant branching and regulates root structure, but also plays an important role in abiotic stress resistance. However, little is known about the function of VvCCD7 under abiotic stress, a key gene for the synthesis of strigolactone in grapevine. In this study, VvCCD7 gene was cloned from grape leaves of 'Cabernet Sauvignon'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!