Water quality forecasting can provide useful information for public health protection and support water resources management. In order to forecast water quality more accurately, this paper proposes a novel hybrid model by combining data decomposition, fuzzy C-means clustering and bidirectional gated recurrent unit. Firstly, the original water quality data is decomposed into several subseries by empirical wavelet transform, and then, the decomposed subseries are recombined by fuzzy C-means clustering. Next, for each clustered series, bidirectional gated recurrent unit is applied to develop prediction model. Finally, the forecast result is obtained by the summation of the predictions for the subseries. The proposed forecast model is evaluated by the water quality data of Poyang Lake, China. Results show that the proposed forecast model provides highly accurate forecast result for all of the six water quality data: the average of MAPE of the forecast results for the six water quality datasets is 4.59% for 7 day ahead prediction. Furthermore, our model shows better forecast performance than the other models. Particularly, compared with the single BiGRU model, MAPE decreased by 32.86% in average. Results demonstrate that the proposed forecast model can be used effectively for water quality forecasting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119136DOI Listing

Publication Analysis

Top Keywords

water quality
32
quality forecasting
12
quality data
12
proposed forecast
12
forecast model
12
water
9
data decomposition
8
decomposition fuzzy
8
forecast
8
forecast water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!